88
Jul 13, 2018 #2 MountEvariste 87 0 You can read $\alpha + \beta + \gamma $, $\alpha\beta +\alpha \gamma + \beta \gamma$ and $\alpha \beta \gamma$ off from the polynomial. Now what's $(\alpha+\beta)+(\alpha+\gamma)+(\beta+\gamma)$? And what's $(\alpha+\beta)(\alpha+\gamma)(\beta+\gamma)$? And finally $(\alpha+\beta)(\alpha+\gamma)+(\beta+\gamma)(\alpha + \beta)+(\alpha+\gamma)(\beta+\gamma)$? Those questions all seem to be an exercise in Vietas formulas. Last edited: Jul 13, 2018
You can read $\alpha + \beta + \gamma $, $\alpha\beta +\alpha \gamma + \beta \gamma$ and $\alpha \beta \gamma$ off from the polynomial. Now what's $(\alpha+\beta)+(\alpha+\gamma)+(\beta+\gamma)$? And what's $(\alpha+\beta)(\alpha+\gamma)(\beta+\gamma)$? And finally $(\alpha+\beta)(\alpha+\gamma)+(\beta+\gamma)(\alpha + \beta)+(\alpha+\gamma)(\beta+\gamma)$? Those questions all seem to be an exercise in Vietas formulas.