Brushless DC Rotor Position Question

AI Thread Summary
Sensing rotor position in brushless DC (BLDC) motors can be achieved through various methods, including hall sensors, back EMF, resolvers, and magnetic encoders. Resolvers provide accurate absolute position and speed measurements, while magnetic encoders offer continuous feedback, improving precision over hall sensors. The proposed idea of using a laser and photoresistor has potential but may face challenges like heat interference. Additionally, sensorless control techniques can estimate rotor position using motor parameters, eliminating the need for physical sensors. Exploring these options can help identify the best solution for specific applications.
benjaminbailes
Messages
4
Reaction score
0
Hi. I am curious about ways to sense the position of a rotor in a BLDC motor. I am familiar with hall sensors and back emf but am wondering if there are other ways to find the position of a rotor maybe more accurately.

I had an idea about using a laser and a photoresistor around the circumference of the stator that would use the varied resistance to give a voltage reading to a microcontroller that could be used to find the position. Maybe I'm way off with that one I can see some problems like heat from the motor messing with the resistance. If anyone could give me some suggestions on what's out there I would appreciate it.
 
Engineering news on Phys.org
Resolvers are also useful for absolute position.
 


Hello! Your question about finding the position of a rotor in a brushless DC motor is a great one. Hall sensors and back emf are commonly used methods for sensing rotor position, but there are also other options available.

One possibility is using a resolver, which is an electromechanical device that can accurately determine the position and speed of a rotating shaft. It works by using a rotor and stator with multiple windings and measuring the inductance and capacitance changes as the rotor rotates.

Another option is using a magnetic encoder, which uses a magnetic field to detect the position of a rotor. This can be a more precise method compared to hall sensors, as it can provide continuous position feedback instead of discrete signals.

Your idea of using a laser and photoresistor is also interesting. While it may face challenges with heat and potential interference, it could be worth exploring further as a potential solution.

I would also suggest looking into sensorless control techniques, which use mathematical algorithms to estimate the rotor position based on other motor parameters such as current and voltage. This can eliminate the need for physical sensors and potentially provide more accurate results.

Overall, there are various methods available for sensing rotor position in a BLDC motor, each with their own advantages and limitations. I recommend researching and testing different options to find the best solution for your specific application. Best of luck in your research!
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Back
Top