Partition function related to number of microstates

AI Thread Summary
The discussion centers on the relationship between the partition function and the number of microstates in statistical mechanics. The partition function, defined as Z = ∑i e^(-βεi), is linked to the Helmholtz free energy and the Shannon entropy, leading to the conclusion that Z is related to the number of microstates (Ω) by the equation Ω = Ze^(βU). However, it is clarified that Boltzmann's entropy formula applies only to microcanonical ensembles, while the partition function pertains to canonical ensembles where microstates are not equally likely. The confusion arises from mixing the entropies of the system and its environment, with the correct interpretation showing that the total number of configurations can be expressed as a product of the microstates of the environment and the partition function. The final result suggests that the relationship Ω_env = Ω(E)e^(-βU) is valid, although it is noted that this specific result is not commonly encountered.
Troy124
Messages
3
Reaction score
0
Hi,

I have a question about the partition function.

It is defined as ## Z = \sum_{i} e^{-\beta \epsilon_{i}} ## where ##\epsilon_i## denotes the amount of energy transferred from the large system to the small system. By using the formula for the Shannon-entropy ##S = - k \sum_i P_i \log P_i## (with ##k## a random constant or ##k_B## in this case), I end up with the following: $$ S = - k \sum_i P_i \log P_i = (k \sum_i P_i \beta \epsilon_i) + (k \sum_i P_i \log Z) = \frac{U}{T} + k \log Z $$

This simplifies to ##Z = e^{-\beta F}## by using the Helmholtz free energy defined as ##F = U - T S##. But Boltzmann's formula for entropy states ##S = k \log \Omega##, where ##\Omega## denotes the number of possible microstate for a given macrostate. So we will get $$ \Omega = e^{S/k} = e^{\beta (U - F)} = Z e^{\beta U} $$

So the partition function is related to the number of microstates, but multiplied by a factor ##e^{\beta U}##. And this bring me to my question: why is it multiplied by that factor? Maybe the answer is quite simple, but I can't seem to think of anything.
 
Physics news on Phys.org
Troy124 said:
Hi,

I have a question about the partition function.

It is defined as ## Z = \sum_{i} e^{-\beta \epsilon_{i}} ## where ##\epsilon_i## denotes the amount of energy transferred from the large system to the small system. By using the formula for the Shannon-entropy ##S = - k \sum_i P_i \log P_i## (with ##k## a random constant or ##k_B## in this case), I end up with the following: $$ S = - k \sum_i P_i \log P_i = (k \sum_i P_i \beta \epsilon_i) + (k \sum_i P_i \log Z) = \frac{U}{T} + k \log Z $$

This simplifies to ##Z = e^{-\beta F}## by using the Helmholtz free energy defined as ##F = U - T S##. But Boltzmann's formula for entropy states ##S = k \log \Omega##, where ##\Omega## denotes the number of possible microstate for a given macrostate. So we will get $$ \Omega = e^{S/k} = e^{\beta (U - F)} = Z e^{\beta U} $$

So the partition function is related to the number of microstates, but multiplied by a factor ##e^{\beta U}##. And this bring me to my question: why is it multiplied by that factor? Maybe the answer is quite simple, but I can't seem to think of anything.

Boltzmann's formula ##S = k_B \ln \Omega## is applicable only to the case of a microcanonical ensemble - a system in which every microstate is equally likely. Note that setting ##P_i = 1/\Omega## in ##S = -k_B \sum_{i=1}^\Omega P_i \ln P_i## gives Boltzmann's formula.

The partition function ##Z = \sum_i \exp(-\beta \epsilon_i)## corresponds to a canonical ensemble. The microstates in a canonical ensemble are not equally likely, so Boltzmann's formula ##S = k_B \ln \Omega## does not apply. (However, the more general formula, ##S = -k_B \sum_{i=1}^\Omega P_i \ln P_i##, does still apply).

You can thus not equate ##\Omega## to ##Ze^{\beta U}##, as the two formulas you used for entropy are not simultaneously true.
 
Hi,

Thanks for your reply. I finally figured out that I mixed up the entropy of the environment with the entropy of the system, because my idea was that the total system, so environment + system, could be described by the microcanonical ensemble and I could use Boltzmann's formula, but then you will end up with something different:

The system including its environment can be described as a microcanonical ensemble. The number of possible configurations for this ensemble are ##\Omega_{total} = \sum_i w_i## where ##w_i## denotes the number of possible configurations given an ##\epsilon_i##.

We know $$w_i = \Omega (E-\epsilon_i) \Omega (\epsilon_i)$$ (with ##\Omega (\epsilon_i) = 1##, ##\Omega (E-\epsilon_i)## the number of microstates of the system when its energy equals ##E-\epsilon_i## and ##\Omega (E)## the number of microstates of the environment, when it is not thermally connected to another system) and thus $$ \Omega_{total} = e^{S_{total}/k} = e^{S/k} e^{S_{env}/k} = e^{\beta (U - F)} \Omega_{env} = \sum_i \Omega (E - \epsilon_i) = \Omega (E) \sum_i e^{-\beta \epsilon_i} = \Omega (E) e^{-\beta F}$$

This simplifies to $$ \Omega_{env} = \Omega (E) e^{-\beta U}$$

Do you know if this is correct, because I have never seen this result before. It does seem okay to me though.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...
Back
Top