What is Wave: Definition and 999 Discussions

In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities, sometimes as described by a wave equation. In physical waves, at least two field quantities in the wave medium are involved. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.
The types of waves most commonly studied in classical physics are mechanical and electromagnetic. In a mechanical wave, stress and strain fields oscillate about a mechanical equilibrium. A mechanical wave is a local deformation (strain) in some physical medium that propagates from particle to particle by creating local stresses that cause strain in neighboring particles too. For example, sound waves are variations of the local pressure and particle motion that propagate through the medium. Other examples of mechanical waves are seismic waves, gravity waves, surface waves, string vibrations (standing waves), and vortices. In an electromagnetic wave (such as light), coupling between the electric and magnetic fields which sustains propagation of a wave involving these fields according to Maxwell's equations. Electromagnetic waves can travel through a vacuum and through some dielectric media (at wavelengths where they are considered transparent). Electromagnetic waves, according to their frequencies (or wavelengths) have more specific designations including radio waves, infrared radiation, terahertz waves, visible light, ultraviolet radiation, X-rays and gamma rays.
Other types of waves include gravitational waves, which are disturbances in spacetime that propagate according to general relativity; heat diffusion waves; plasma waves that combine mechanical deformations and electromagnetic fields; reaction-diffusion waves, such as in the Belousov–Zhabotinsky reaction; and many more.
Mechanical and electromagnetic waves transfer energy, momentum, and information, but they do not transfer particles in the medium. In mathematics and electronics waves are studied as signals. On the other hand, some waves have envelopes which do not move at all such as standing waves (which are fundamental to music) and hydraulic jumps. Some, like the probability waves of quantum mechanics, may be completely static.
A physical wave is almost always confined to some finite region of space, called its domain. For example, the seismic waves generated by earthquakes are significant only in the interior and surface of the planet, so they can be ignored outside it. However, waves with infinite domain, that extend over the whole space, are commonly studied in mathematics, and are very valuable tools for understanding physical waves in finite domains.
A plane wave is an important mathematical idealization where the disturbance is identical along any (infinite) plane normal to a specific direction of travel. Mathematically, the simplest wave is a sinusoidal plane wave in which at any point the field experiences simple harmonic motion at one frequency. In linear media, complicated waves can generally be decomposed as the sum of many sinusoidal plane waves having different directions of propagation and/or different frequencies. A plane wave is classified as a transverse wave if the field disturbance at each point is described by a vector perpendicular to the direction of propagation (also the direction of energy transfer); or longitudinal if those vectors are exactly in the propagation direction. Mechanical waves include both transverse and longitudinal waves; on the other hand electromagnetic plane waves are strictly transverse while sound waves in fluids (such as air) can only be longitudinal. That physical direction of an oscillating field relative to the propagation direction is also referred to as the wave's polarization which can be an important attribute for waves having more than one single possible polarization.

View More On Wikipedia.org
  1. person123

    I Shallow Water Wave Equation Simulation: Reverse Shoaling?

    I'm creating a simulation of the shallow water wave equation in MATLAB. I'm using the equations: $$\frac{\partial v}{\partial t}=-g\frac{\partial \eta}{\partial x}$$ $$\frac{\partial h}{\partial t}=-h\frac{\partial v}{\partial x}$$ Iteratively updating the velocity from neighboring heights...
  2. A

    I My textbook is deriving wave speed on a string under tension

    My textbook is deriving wave speed on a string under tension with confusing thetas. It assumes ##\tan \theta_1 = \frac{-F_1}{F_T}## and ##\tan \theta_2 = \frac{F_2}{F_T}## which confuses me. I know for sure theta is the angle due to the position of y and x, ##\tan \theta = \frac{y}{x}##, but I...
  3. Dom Tesilbirth

    The magnetic phase change of an electromagnetic wave during reflection

    If the question had mentioned ##\overrightarrow{E}## instead of ##E_\bot##, then we could have used ##\overrightarrow{B}=\dfrac{1}{v}\widehat{k}\times \overrightarrow{E}## to get the direction of the magnetic field. But the question had only mentioned ##E_\bot##. To my understanding, knowing...
  4. DaveC426913

    B Frequency of Gravitational Waves: Limit & Possibilities

    A question elsewhere got me thinking about the frequencies/wavelengths of gravitational waves. The most obvious source of gravitational waves we are finding is from merging black holes, so presumably the orbital period will directly determine the frequency of those waves, yes? So the...
  5. H

    Finding the angle at the apex of a rhomb with incoming linear wave

    Hi, Since I'm dealing with a rhombus, the angle at the bottom(A) and top(A) are the same. Thus, I only have to find the angle at the bottom since the incoming beam is already perpendicular to the side of the rhombus. Since the incoming beam is perpendicular to the side ##\theta_I = \theta_T =...
  6. H

    I Group velocity for an electromagnetic wave inside glass

    Hi, I saw that the group velocity for an electromagnetic wave can be calculate with the following formula ##v_g = v_p + k \frac{d v_p}{dk}## Thus, since ##v_p = \frac{c}{n} = \frac{\omega}{k}## Is it correct to say that ##v_g = \frac{c}{n} + k(- \frac{\omega}{k^2})## where ##k =...
  7. samy4408

    I Question about electromagnetics (waves and particles)

    I saw that we can talk about the light as particles (photons ) or as an electromagnetic wave , the question is that do we represent other electromagnetic waves (like microwaves or radio waves ) as particles (like we do with light ) ?
  8. H

    I Understanding the Expression for a Linear EM Wave Transmission?

    Hi, I have an expression in my textbook that I don't really understand. I have 2 questions regarding this expression for a linear EM wave## \tilde{\vec{E_{0i}}} = (E_{0x} \hat{x} \pm E_{0y} \hat{y}) e^{i(kz- \omega t)}## ## \tilde{\vec{E_{0t}}} = (\sum_j E_{oij} e_{pj}) \hat{e_p} ## ##...
  9. V

    Mechanism of mechanical transverse wave in solids

    I am not sure, but below is my attempt. In solids the force between adjacent atoms/molecules is very strong. So, when a part of the solid medium is displaced perpendicular to the solid medium like a rope, the atoms/particles in the medium just ahead of the displaced part will tend to bring the...
  10. Mayhem

    [Quantum Chemistry] Generalized wave function in covalent bonding

    Is there a general expression for the wave function $\psi$, which describes the electronic properties of an arbitrary covalent bond? For example is it equal to some sort of trigonometric expression?
  11. V

    Why does a traveling wave pulse get distorted?

    I am getting confused by this question. Nevertheless, I tried answering this question. When I see the word pulse, it brings to my mind a pulse traveling in a rope as shown in diagram below and I cannot relate dispersion to the rope medium in which pulse is travelling. What I do know is that...
  12. patric44

    Nuclear rotor model wave function

    hi guys I am recently taking a Nuclear structure course, and have a lot of questions regarding the nuclear rotor model. in most nuclear physics books the I have, the wave function associated with the rotor model of the nucleus is written in terms of the Wigner D functions , like the expression...
  13. V

    Direction of of the velocity vector for particles in a sound wave

    Using the equations mentioned under this question, I came up with following analysis and directions of velocities on either side of ##x_1##. Also, I'm not sure if there is an easier qualitative way to know the velocity directions rather than do a detailed Calculus based analysis?
  14. ThiagoSantos

    I Wave function using the time dependent Schrodinger equation

    Given a wavefunction ψ(x, 0) of a free particle at initial time t=0, I need to write the general expression of the function at time t. I used a Fourier transform of ψ(x, t) in terms of ψ(p, t), but, i don't understand how to use green's functions and the time dependent schrodinger equation to...
  15. V

    Reflection of sound wave in an open organ pipe

    I know that standing waves form in an open organ pipe. Since, standing waves can only form from superposition of original wave and reflected wave, so there must be a reflected wave in an open organ pipe. But I fail to understand how sound wave can reflect at the open end of organ pipe.
  16. V

    Direction of motion of points on a rope as a wave travels

    The second diagram is my attempt at the solution, in which the dotted part is the pulse in the rope a very small interval of time after ##t=0##. Point A should be at rest since we know wave is moving towards right and point A on the rope becomes a part of initial horizontal part of the string a...
  17. K

    B Standing or Stationary Wave: Exploring the Definition and Interpretation

    Homework Statement:: Definition Relevant Equations:: Definition interpretation I saw the definition below for a standing or stationary wave. Is this definition correct, as my definition of a 'fixed displacement' for this type of wave applies only to anti-nodes on a stationary wave? Thanks...
  18. bob012345

    I FEM Method for the Wave Equation

    I am trying to understand how to apply the finite element method for a simple 1D wave equation with four elements for learning purposes. $$\frac{d^2 T(x)}{dx^2} = -f(x)$$ I am stuck because the structure of the equations set up in Numerical Methods for Engineers by Chapra and Canale as shown...
  19. Boltzman Oscillation

    I How does the magnetic component of an EM wave affect surroundings?

    Hi all, as we all know EM waves are made up of magnetic and electric waves in a plane perpendicular to the direction of propagation. Given this, why don't I see conductors being affected when I shine light at them? Woulnt the magnetism cause a force? Is is that the force is too small? What am i...
  20. S

    Deriving Wave Function: Confused about (ix/a) & (-x^2/2a)?

    It is asking to derive the time-independent wave function and has managed to get the answer of and i am very confused as where (ix/a) and (-x^2/2a) came from ? Thanks.
  21. C

    I Millimeter Wave Dosimeter

    Hi I'm trying to duplicate the experiment in the paper I've attached. I'm having some trouble sourcing the carbon loaded teflon described in the paper. Would something like graphite sheet work? I guess as long as you had something semi-conductive that heats so when EM radiation passes thru it...
  22. N

    Demodulation of modulating square wave

    Hi all There is RF signal in frequency range of 240 MHz to 500 MHz which has been amplitude modulated by 155 Hz square wave signal. The problem is to recover 155 Hz signal while exact RF Carrier frequency is unknown (240 MHz to 500 MHz). Is there any ready made COTs solution available for such...
  23. Physics Slayer

    B What proof do we have of wave functions?

    How can we be sure that a system on the scale of atoms can be described by a single scalar field or the wave function ##\psi##. I don't just want to do shut up and calculate, maybe using a wave function and then putting it through the time evolution of the Schrödinger equation works, but why...
  24. alexandrinushka

    B Wave-Particle Duality -- When is it a wave and when is it a particle?

    In order to trigger this "interaction at a point as a particle" does an entity need to meet a certain criteria? Why doesn't any other entity on its way force this transition? Can the properties of this wave be altered? Thank you.
  25. C

    I Equivalent formula for a Sound wave in a medium like an EM wave

    1.) In electromagnetics, wavelength in a medium is $$\lambda = \frac{\lambda_{0}}{n}$$, where $$n$$ is the refractive index. What is the equivalent formula for sound wave in a medium? 2.) Is there a reference sound velocity, like electromagetic wave speed in vacuum is $$c_{0} =...
  26. rudransh verma

    B Is the Kink in the Electromagnetic Wave Responsible for Delayed Motion?

    I was reading Six easy pieces from Feynman and I got stuck what is electromagnetism 2 years ago. Recently I came across a video and I think I have figured it out. The paragraph says like this: “ If we were to charge a body, say a comb, electrically, and then place a charged piece of paper at...
  27. J

    B What type of wave is described by y'' = -k*y^2

    A sinusoid can be described by the differential equation y'' = -k*y, where the force y'' is proportional to how far away from the center it is. However in many physical systems the force between two bodies decreases with distance squared. So would we still classify the differential equation...
  28. G

    I What is the speed of a shock wave?

    There is lots of good information online about shock waves but I'm not finding what I want. If dynamite has a detonation rate of 6800 m/s does the shock wave travel at 6800 m/s? Is sound we hear 1 mile away the shock wave or the sound? What speed is an atom bomb shock wave? This large horn...
  29. Afo

    Solving a Sound Wave Equation in Physics 1: Halliday, Resnick, and Krane

    Homework Statement:: This is from 5 ed, Physics 1Halliday, Resnick, and Krane. page 428 about sound waves I have highlighted the equation that I don't understand. How did the author get it? I understand how they get from the middle side to the RHS of the equation, but I don't understand how...
  30. chwala

    Solving the wave equation with change of variables approach

    I am refreshing on the pde's, and i am trying to understand how the textbook was addressing change of variables, i find it a bit confusing. I will share the textbook approach, then later share my own understanding on change of variables approach. Here is the textbook approach; My approach on...
  31. R

    How Does Mathematical Theory Explain Multiple Wave Reflections?

    I know for a wave moving from left to right, ##\psi_i = Ae^{i(\omega t - k_1x)}## The first reflection where ##Z_1## is ## R_{12}Ae^{i(\omega t - k_1x)}## The second reflection. The wave moves from 2 to the limit between 2 and 3 then reflect... Thus, ##T_{12}R_{23}T_{21} Ae^{i(\omega t - k_1 x...
  32. raz

    A Bloch momentum-space wave functions

    Hello, I wonder if it is possible to write Bloch wave functions in momentum space. To be more specific, it would calculate something like (using Sakurai's notation): $$ \phi(\vec k) = \langle \vec k | \alpha \rangle$$ Moving forward in a few steps: Expanding: $$ \phi(\vec k) = \int d^3\vec r...
  33. Shreya

    What is the relationship between particles and waves in QED?

    "Everything is a particle whose position is predicted by a mathematical wave. Light is not a wave but is packet of energy whose position is predicted by the wave.The same goes for an electron. Interference pattern is a probability distribution of where we are likely to find an electron. When...
  34. jaumzaum

    I Hydrodynamics - Wave of Translation

    Hello guys! I am studying the hydrodynamics of a ship in shallow water. In deep water the ship creates 2 wave patterns, one transverse and another divergent, both making an angle of 19°28'. Also, the maximum velocity of a wave in shallow water is given by ##\sqrt{gh}## where h is the depth of...
  35. P

    Analogy between EM wave reflection and S-parameters

    It is well known that one can solve incident an reflective wave in homogeneous linear media by matching PDE boundary conditions. In the electrical engineering community, one solves similar problem using smith chart and scattering parameters for 1-dimensional propapation of TEM modes in...
  36. F

    I Why we know average speed of single photon equal speed of EM wave?

    Why we know that average speed of a single photon(in point particle view) equal the speed of EM wave?If average speed of a single photon smaller than c then there exist massive photons?
  37. R

    Progressive wave, wavelength moving in the opposite direction

    I'm trying to find the wavelength. However, I don't understand why the wavelength is different if the wave is moving in the +z direction. I have ##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)## ##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)## For a wave moving on the -z direction I know that the...
  38. Hamiltonian

    I Writing the wave function solutions for a particle in a 2-D box

    The final wave function solutions for a particle trapped in an infinite square well is written as: $$\Psi(x,t) = \Sigma_{n=1}^{\infty} C_n\sqrt{\frac{2}{L_x}}sin(\frac{n\pi}{L_x}x)e^{-\frac{in^2{\pi}^2\hbar t}{2m{L_x}^2}}$$ The square of the coefficient ##C_n## i.e. ##{|C_n|}^2## is...
  39. jim mcnamara

    Ordovician mass extinction second wave - deep sea anoxia

    https://www.nature.com/articles/s41561-021-00843-9 Popular science version: https://scitechdaily.com/uncovering-the-surprising-secrets-behind-Earth's-first-major-mass-extinction/ Nature paper discusses causes of the second "wave" of mass extinction at the end of the Ordovician (~445mya) Really...
  40. C

    Resultant Frequency and Wavelength of Interfering Sound Waves

    ##-w1## and ##-w2## are to shift the cosine graph to the right, and ##\frac{2pi}{\lambda}## is to stretch the graph. But I can't seem to draw an appropriate ##y1+y2## graph (quite irregular) and I struggle to find the resultant frequency and wavelength. Also, why is there angular frequency in a...
  41. I

    How can I plot the function g(x) = sin(πn/L) x and its corresponding g²(x)?

    Summary:: We are currently studying basics of quantum mechanics. I'm getting the theory part but it's hard to visualise everything and understand. We are given this question to plot the function so if someone could help me in this. Plot the following function and the corresponding g²(x) g(x)...
  42. rudransh verma

    Car traffic producing shock wave

    I don’t get where exactly the lengths start and end in figure.
  43. R

    How to find the amplitude of oscillations of a string with 5 beads?

    Hi, First of all, I'm wondering if a beaded string is the right term? I have to find the amplitude of the modes 2 and 3 for a string with 5 beads. In my book I have $$A_n = sin(\kappa p)$$ or $$A_n = cos(\kappa p) $$ it depends if the string is fixed or not I guess. where $$\kappa = \frac{n\pi...
  44. Mayhem

    Particle in a box: Finding <T> of an electron given a wave function

    If ##\hat{T} = -\frac{\hbar}{2m}\frac{\mathrm{d^2} }{\mathrm{d} x^2}##, then the expectation value of the kinetic energy should be given as: $$\begin{align*} \left \langle T \right \rangle &= \int_{0}^{L} \sqrt{\frac{2}{L}} \sin{\left(\frac{\pi x}{L}\right)}...
  45. B

    I Equation to graph a sine wave that acts like a point on a unit circle

    I need an equation to graph a sine wave that act like a unit circle but only positive numbers. so I need it to be 0 at 0, A at 90 , 0 at 180, A at 270, 0 at 360, and A at 450 and so on and so on... Now I know sin(0) is 0 in degrees and sin(90) 1 and I know if you Square a number is...
  46. S

    Amplitude of standing wave for higher frequency

    I understand the part where there will be more nodes produced because number of wave produced will increase (let say from half wave to one wave). But I don't understand the part where the amplitude will be less. How can number of nodes (or frequency) affect the amplitude of standing wave...
  47. Seanskahn

    I Behavior of a curved 2D sheet and a curved 1D wire under acoustic wave

    Good day. We know how simple objects, such as 1D wires behave when a simple harmonic wave travels along a wire, or two wires knotted togethe.We also know what happens if you excite a circular thin disc with a single frequency. Are there some material I can read on, that considers the effect...
  48. U

    I Phase Speed of Wave in non-relativistic Doppler Shift Derivation

    Consider the situation where an observer at rest on the ground measures the frequency of a siren which is moving away from the observer at speed ##v_{Ex}##. Let ##v_w## be the speed of the sound wave. Let ##\lambda_0##, ##f_0##, ##\lambda_D##, and ##f_D## be the wavelengths and frequencies...
  49. S

    How Do Different Equations Affect the Initial Direction of a Traveling Wave?

    But in the notes from teacher, the equation is ##y=A \sin (kx - \omega t)## for wave traveling to the right and ##y=A \sin (-kx - \omega t)## for wave traveling to the left When I transform the equation of the wave traveling to the left using trigonometry: $$y=A \sin (-kx - \omega t)$$ $$y=-A...
Back
Top