Ampere's Law For Static Magnetic Field

  • #1
BlackMelon
43
7
Hi there!

Please refer to the picture below. I would like to understand the equation Curl(H) = J, where H is the magnetic field intensity and J is the current density. So, I inspect a simple problem.
There is a wire carrying current I in the z-axis direction. a_r, a_phi, and a_z are the unit vectors in the directions of the radius, the tangential line, and z-axis, respectively.

So, from H = I/(2*pi*r)a_phi. I take the curl of this vector (in cylindrical coordinate) and got 0. How does this relate to the current density?

Best
BlackMelon

1695964252946.jpeg
 
Physics news on Phys.org
  • #2
The field you've written down is the field outside a current carrying wire. What would you expect for the current density outside a wire?
 
  • #3
Ibix said:
The field you've written down is the field outside a current carrying wire. What would you expect for the current density outside a wire?
Oh well it's zero. That was the silly of me LOL. Thank you very much.

By the way, I have analyzed the inside of the wire H = I*r/(2*pi*R^2) a_phi.
where r is the radius from the center of the wire to the point of interest. R is the radius of the wire. And got the correct answer:
J = curl (H) = I/(pi*R^2) a_z

1695975871845.png
 
  • Like
Likes Dale and Ibix
  • #4
Adding more information to my previous comment, here is how I calculate the current density inside the wire using curl(H) = J
1696130017446.png
 
  • Like
Likes Dale
  • #5
The solution in local form is indeed given by using the magnetostatic Maxwell equations as follows:
$$\vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{B}=\mu_0 \vec{j}.$$
We have given
$$\vec{j}=\begin{cases}\frac{I}{\pi R^2} \vec{e}_z &\text{for} \quad \rho \leq R \\ 0 &\text{for} \quad \rho>R. \end{cases}$$
To solve this equations it's most simple to make the ansatz
$$\vec{B}=B(\rho) \vec{e}_{\varphi}.$$
Using the formula for the curl in cylinder coordinates you get
$$\vec{\nabla} \times \vec{B}=\frac{1}{\rho} \partial_{\rho} (\rho B) \vec{e}_z.$$
From this you get for ##\rho<R:##
$$\partial_{\rho} (\rho B)=\frac{\mu_0 I}{\pi R^2} \rho.$$
This can be immediately integrated to
$$B(\rho)=\frac{\mu_0 I}{2 \pi R^2}\rho + \frac{C}{\rho},$$
where ##C## is an integration constant. Since there's no singularity at ##\rho=0##, you get ##C=0##, i.e.,
$$B(\rho)=\frac{\mu_0 I}{2 \pi R^2}\rho \quad \text{for} \quad \rho<R.$$
For ##\rho \geq R## you have
$$\partial_{\rho} (\rho B)=0 \; \rightarrow \; B=\frac{B_0}{\rho} \quad \text{with} \quad B_0=\text{const}.$$
Now, at ##\rho=R##, ##B## must be continuous, which gives
$$B(\rho)=\frac{\mu_0 I}{2 \pi \rho} \quad \text{for} \quad \rho \geq R.$$
One should also check that ##\vec{\nabla} \cdot \vec{B}=0##, which however is already seen easily to be fufilled by the initial general ansatz.
 
  • Like
Likes BlackMelon
  • #6
vanhees71 said:
The solution in local form is indeed given by using the magnetostatic Maxwell equations as follows:
$$\vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{B}=\mu_0 \vec{j}.$$
We have given
$$\vec{j}=\begin{cases}\frac{I}{\pi R^2} \vec{e}_z &\text{for} \quad \rho \leq R \\ 0 &\text{for} \quad \rho>R. \end{cases}$$
To solve this equations it's most simple to make the ansatz
$$\vec{B}=B(\rho) \vec{e}_{\varphi}.$$
Using the formula for the curl in cylinder coordinates you get
$$\vec{\nabla} \times \vec{B}=\frac{1}{\rho} \partial_{\rho} (\rho B) \vec{e}_z.$$
From this you get for ##\rho<R:##
$$\partial_{\rho} (\rho B)=\frac{\mu_0 I}{\pi R^2} \rho.$$
This can be immediately integrated to
$$B(\rho)=\frac{\mu_0 I}{2 \pi R^2}\rho + \frac{C}{\rho},$$
where ##C## is an integration constant. Since there's no singularity at ##\rho=0##, you get ##C=0##, i.e.,
$$B(\rho)=\frac{\mu_0 I}{2 \pi R^2}\rho \quad \text{for} \quad \rho<R.$$
For ##\rho \geq R## you have
$$\partial_{\rho} (\rho B)=0 \; \rightarrow \; B=\frac{B_0}{\rho} \quad \text{with} \quad B_0=\text{const}.$$
Now, at ##\rho=R##, ##B## must be continuous, which gives
$$B(\rho)=\frac{\mu_0 I}{2 \pi \rho} \quad \text{for} \quad \rho \geq R.$$
One should also check that ##\vec{\nabla} \cdot \vec{B}=0##, which however is already seen easily to be fufilled by the initial general ansatz.
Thank you very much for the explanation :)
 

What is Ampere's Law for a static magnetic field?

Ampere's Law states that the magnetic field around a closed loop is directly proportional to the current passing through the loop.

When can Ampere's Law be used for a static magnetic field?

Ampere's Law can be used when the magnetic field is constant in time and does not change with respect to position.

What is the mathematical expression for Ampere's Law?

The mathematical expression for Ampere's Law is ∮B⋅dl = μ₀I, where B is the magnetic field, dl is an infinitesimal element of length along the closed loop, μ₀ is the permeability of free space, and I is the current passing through the loop.

What is the direction of the magnetic field according to Ampere's Law?

According to Ampere's Law, the direction of the magnetic field is tangential to the closed loop in the direction determined by the right-hand rule.

Can Ampere's Law be used to calculate the magnetic field inside a solenoid?

Yes, Ampere's Law can be used to calculate the magnetic field inside a solenoid by considering a closed loop that encloses the solenoid and applying the law to determine the magnetic field inside the solenoid.

Similar threads

Replies
8
Views
680
Replies
15
Views
746
Replies
27
Views
1K
Replies
14
Views
2K
Replies
2
Views
300
Replies
1
Views
962
  • Electromagnetism
Replies
6
Views
2K
Replies
1
Views
771
Replies
2
Views
1K
Replies
5
Views
1K
Back
Top