Evaluating a momentum operator

In summary, the mode expansions of the vector potential are given by equations (1.1) and (1.2), and the time and spatial derivatives are given by equations (1.3) and (1.4) respectively. When evaluating the term ##\dot A_{\mu} \nabla A^{\mu}##, we need to be careful with the products and use different momenta for each factor. After some calculations, we are left with the right-hand side of the desired formula, but there are some discrepancies with the expected factor. Further analysis is needed to clarify these issues.
  • #1
JD_PM
1,131
158
Homework Statement
Show that the momentum operator ##\hat{\vec P}## yields



$$\hat{\vec P} = \int d^3 \vec x \frac{1}{c^2} \mathcal{N} \left( \dot A_{\mu} \nabla A^{\mu} \right) = \sum_{\vec k} \hbar \vec k N( \vec k)$$



Where ##\mathcal{N}## stands for normal-ordering and ##N( \vec k)## is the number operator

##N( \vec k) = \sum_{r=0}^3 \zeta_r a_r^{\dagger} (\vec k) a_r^{\dagger} (\vec k)## (for instance, EQ ##5.33## Mandl & Shaw)
Relevant Equations
Please see below
I think I get the approach. We first need to evaluate the term ##\dot A_{\mu} \nabla A^{\mu}## and then evaluate the 3D space integral; we may need to take the limit ##V \rightarrow \infty## (i.e ##\sum_{\vec k} (2 \pi)^3/V \rightarrow \int d^3 \vec k##) at some point.

The mode expansions of the vector potential ##A^{\mu}=A_{+}^{\mu} + A_{-}^{\mu}## are

$$A_{-}^{\mu}=\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r^{\dagger}(\vec k) e^{ik \cdot x} \right] \tag{1.1}$$

$$A_{+}^{\mu}=\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r(\vec k) e^{-i \vec k \cdot \vec x} \right] \tag{1.2}$$

The time-derivatives of ##(1.1)## and ##(1.2)## are

$$\dot A_{-}^{\mu} = ik^0 e^{ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r^{\dagger}(\vec k) e^{-i \vec k \cdot \vec x} \right]$$

$$\dot A_{+}^{\mu} = -ik^0 e^{-ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r(\vec k) e^{i \vec k \cdot \vec x} \right]$$

The spatial-derivatives of ##(1.1)## and ##(1.2)## are

$$ \nabla A_-^{\mu} = -i e^{ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \vec k \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r^{\dagger}(\vec k) e^{-i \vec k \cdot \vec x} \right]$$

$$ \nabla A_+^{\mu} = i e^{-ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \vec k \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r(\vec k) e^{i \vec k \cdot \vec x} \right]$$

We evaluate ##\dot A_{\mu} \nabla A^{\mu}##

$$\dot A_{\mu} \nabla A^{\mu}=(\dot A^{+}_{\mu}+ \dot A^{-}_{\mu})(\nabla A_+^{\mu} +\nabla A_-^{\mu})=\dot A^{+}_{\mu}\nabla A_+^{\mu} + \dot A^{-}_{\mu}\nabla A_-^{\mu} + \dot A^{+}_{\mu}\nabla A_-^{\mu}+\dot A^{+}_{\mu}\nabla A_+^{\mu}$$

Let's evaluate ##\dot A^{+}_{\mu}\nabla A_+^{\mu}## explicitly

$$\dot A^{+}_{\mu}\nabla A_+^{\mu}=-ik^0 e^{-ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \eta_{\mu \nu} \epsilon_r^{\nu} a_r(\vec k) e^{i \vec k \cdot \vec x} \right]i e^{-ik^0 x^0} \sum_{r=0}^3 \sum_{\vec k} \left[ \vec k \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r(\vec k) e^{i \vec k \cdot \vec x} \right] \tag{*}$$

OK ##(*)## looks messy; let's focus on relevant terms

$$\dot A^{+}_{\mu}\nabla A_+^{\mu} \sim \eta_{\mu \nu} \epsilon_r^{\nu} a_r(\vec k) \vec k \epsilon_r^{\mu} a_r(\vec k)= \eta_{\mu \nu} \epsilon_r^{\nu} \vec k \epsilon_r^{\mu} a_r(\vec k) a_r(\vec k)\tag{**}$$

Once here, based on the orthonormality and completeness of the polarization vectors

55456765677.png


And the customary choice of polarization vectors

1212121212121213454.png


So the idea would be using ##(5.19)## but we do not have the ##\zeta_r## factor. Besides, the 3-vector ##\vec k## suggests we may have to use the orthogonal conditions ##(5.22b)##.

How could we evaluate ##(*), (**)## then?

Thank you :biggrin:
 
  • Like
Likes vanhees71 and Delta2
Physics news on Phys.org
  • #2
It's a pretty longish calculation. You have to be a bit more careful though when looking at products and use different momenta for each of the factors and then interchange the momentum integrals with the spatial integral making use of
$$\int_{\mathbb{R}^3} \mathrm{d}^3 x \exp(\mathrm{i} (\vec{k}_1-\vec{k}_2) \cdot \vec{x})=(2 \pi)^3 \delta^{(3)}(\vec{k}_1-\vec{k}_2).$$
Then you can do one of the then trivial momentum integrations and are left with the other momentum integral leading to the right-hand side of the formula you want to prove. Just keep calculating!
 
  • Like
Likes JD_PM and Delta2
  • #3
Hi vanhees71, I see it better now thanks to your comments.

OK let me rewrite ##(*)##, distinguishing momentum and polarization vectors. I also noticed I missed a ##1/c## factor (which pops up due to ##\partial_{0}=\partial/(c\partial t)##)

$$\dot A^{+}_{\mu}\nabla A_+^{\mu}=\sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0/c \ \eta_{\mu \nu} \epsilon_r^{\nu}(\vec k) a_r(\vec k) e^{-i k \cdot x} \vec k' \epsilon_s^{\mu}(\vec k') a_s(\vec k') e^{-i k' \cdot x} \right]$$

$$=\sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0/c \ \vec k'\epsilon_{r \mu}(\vec k)\epsilon_s^{\mu}(\vec k') a_r(\vec k) a_s(\vec k') e^{-i (k+k') \cdot x} \right]$$

Using the orthonormality condition ##(5.18)## and ##k^0 = \omega_{\vec k} / c##

$$=-\sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0/c \ \vec k'\zeta_r \delta_{r,s}\delta_{\vec k, \vec k'} a_r(\vec k) a_s(\vec k') e^{-i (k+k') \cdot x} \right]$$ $$=-\sum_{r}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar }{2V} \Big) \vec k \zeta_r a_r(\vec k) a_r(\vec k) e^{-2i k \cdot x} \right]$$

Mmm this (at least) smells good! We've got the ##\hbar \vec k## term and ##\zeta_r##. However there are two main issues: I do not get the number operator and ##e^{-2i k \cdot x}## is not the expected factor (we would expect something like ##e^{i (k-k') \cdot x}##, so that the Dirac-delta function could be obtained after integrating over momentum space).

I considered the possibility that this term may not contribute to the final answer but I do think it does, as none of the other 3 terms is ##\sim a_r(\vec k) a_r(\vec k)##...

Or maybe I just need to think more about it 😅
 
  • #4
You forgot the ##\vec{x}##-integral. Only then the resulting ##\delta^{(3)}(\vec{k}+\vec{k}')## allows you to use the orthonormality condition for the polarization vectors but then also you have the factor ##\vec{k}##!
 
  • Like
Likes JD_PM
  • #5
vanhees71 said:
You forgot the ##\vec{x}##-integral

Oh I see! Let's try again

$$\frac{1}{c^2} \int d^3 \vec x \sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0 \ \vec k'\epsilon_{r \mu}(\vec k)\epsilon_{s}^{\mu}(\vec k') a_r(\vec k) a_s(\vec k') e^{-i (k+k') \cdot x} \right]=$$

$$= \frac{1}{c^2} \sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0 \ \vec k'\epsilon_{r \mu}(\vec k)\epsilon_{s}^{\mu}(\vec k') a_r(\vec k) a_s(\vec k') (2 \pi)^3 \delta^{(3)}(\vec k + \vec k') e^{-i (k^0+k'^0) x}\right] \tag{@}$$

Where I've performed the 3D integral. Taking the limit ##V \rightarrow \infty## (i.e ##\sum_{\vec k} (2 \pi)^3/V \rightarrow \int d^3 \vec k##) and the orthonormality condition ##(5.18)## we get

$$@ = \frac{1}{c^2} \sum_{r,s=0}^3 \sum_{\vec k} \int d^3 \vec k' \left[ \Big(\frac{\hbar c^2}{2 \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2 \omega_{\vec k'}} \Big)^{1/2} k^0 \ \vec k'\epsilon_{r \mu}(\vec k)\epsilon_{s}^{\mu}(\vec k') a_r(\vec k) a_s(\vec k') \delta^{(3)}(\vec k + \vec k') e^{-i (k^0+k'^0) x}\right]=$$

$$= \sum_{r,s=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar }{2} \Big) \vec k \ \epsilon_{r \mu}(\vec k)\epsilon_{s}^{\mu}(\vec k) a_r(\vec k) a_s(\vec k) e^{-i (k^0+k'^0) x}\right]=$$

$$= -\frac{\hbar }{2} \sum_{r=0}^3 \sum_{\vec k} \left[ \vec k \
\zeta_r a_r(\vec k) a_r(\vec k) e^{-i (k^0+k'^0) x}\right]$$

Mmm it does not look right, as I am not getting the number operator, I get the extra factor ##e^{-i (k^0+k'^0) x}## and the -ive sign.

I have the same issue with the term

$$\dot A^{-}_{\mu}\nabla A_-^{\mu} \sim -a_r^{\dagger} (\vec k) a_r^{\dagger} (\vec k)$$

Thinking...
 

1. What is a momentum operator?

A momentum operator is a mathematical representation of the momentum of a particle in quantum mechanics. It is represented by the symbol p and is used to describe the velocity and direction of a particle.

2. How is a momentum operator evaluated?

A momentum operator is evaluated by taking the derivative of the wave function with respect to the position of the particle. This is represented by the equation p = -iħ∇, where i is the imaginary unit and ħ is the reduced Planck's constant.

3. What is the significance of evaluating a momentum operator?

Evaluating a momentum operator allows us to determine the momentum of a particle in a quantum system. This is important because momentum is a fundamental property of particles and is essential in understanding their behavior and interactions.

4. Can a momentum operator be measured?

No, a momentum operator cannot be directly measured. In quantum mechanics, the act of measurement changes the state of the system, making it impossible to accurately measure the momentum of a particle without altering its behavior.

5. How does the uncertainty principle relate to evaluating a momentum operator?

The uncertainty principle states that the more precisely we know the momentum of a particle, the less we know about its position, and vice versa. Therefore, by evaluating a momentum operator, we are also indirectly determining the uncertainty in the position of the particle.

Similar threads

  • Advanced Physics Homework Help
Replies
7
Views
1K
  • Advanced Physics Homework Help
Replies
3
Views
400
  • Advanced Physics Homework Help
Replies
1
Views
591
  • Advanced Physics Homework Help
Replies
7
Views
1K
Replies
18
Views
1K
Replies
27
Views
2K
Replies
1
Views
383
  • Advanced Physics Homework Help
Replies
6
Views
315
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
Back
Top