How Do You Calculate Width in a Changing Rectangle with Constant Area?

Click For Summary
To calculate the width of a rectangle with a constant area of 200 square meters while its length is increasing at 4 meters per second and width decreasing at 0.5 meters per second, the relationship LW = A is used. The differentiation of this equation leads to the equation 4W - 0.5L = 0. To find the width W, one must first determine the length L using the area equation. Solving the simultaneous equations A = WL and 0 = 4W - 0.5L will yield the values for both dimensions. Understanding the product rule in differentiation is crucial for correctly applying related rates in this scenario.
NewsboysGurl91
Messages
10
Reaction score
0
1. A rectangle has a constant area of 200 square meters and its length L is increasing at the rate of 4 meters per second. Find the width W at the instant the width is decreasing at the rate of 0.5 meters per second.



2. Know: dL/dt= 4 m/s, dW/dt=.5 m/s Want: W



3. LW=A. Then DL/dt * DW/dt = 200 m^2. How do you get W from this?

I have some other questions too. Related rates are hard.
 
Physics news on Phys.org
NewsboysGurl91 said:
1. A rectangle has a constant area of 200 square meters and its length L is increasing at the rate of 4 meters per second. Find the width W at the instant the width is decreasing at the rate of 0.5 meters per second.



2. Know: dL/dt= 4 m/s, dW/dt=.5 m/s Want: W



3. LW=A. Then DL/dt * DW/dt = 200 m^2. How do you get W from this?

I have some other questions too. Related rates are hard.
dL/dt*dw/dt= 200 can't possibly be correct, can it? 4*0.5 is not 200! Recheck your differentiation- particularly the "product rule"! Also, it is the area that is the constant 200, not the rate of change. What is the derivative of a constant?
 
Never mind, I totally forgot about the product rule.
 
Okay, I got stuck again.
DL/dt*W+ L*DW/dt = 0.
4*W + L* -.5 = 0. How do you find L? Once you find L, isn't it obvious what W will be? Then you wouldn't have to go through this whole rate problem.
 
use the two equations

solve the original area equation and differential equation simultaneously

That is,

A = wl
0 = 4w - .5l

solve the above for w.
 
Kay, thanks.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...