m1<u1x, 0> = m1<v1x, v1y> + m2<v2x, v2y>
<m1u1x, 0> = <m1v1x, m1v1y> + <m2v2x, m2v2y>
<m1u1x, 0> = < m1v1x + m2v2x, m1v1y + m2v2y>
therefore,
m1v1x + m2v2x = m1v0
m1v1y = -m2v2y
3v1cos(φ) + ½v2 = 3v0
v2 = -(6/√3)v1sin(φ) still got the same thing for this one