Finding the Electric Field given the potential in spherical

John004
Messages
37
Reaction score
0

Homework Statement


The problem statement is in the attachment

Homework Equations


E[/B] = -φ

= (∂φ/∂r)er

The Attempt at a Solution



I am confused about how to do the derivative apparently because the way I do it gives

E = - (∂[p*r/4πε0r3]/∂r)er = 3*(p*r)/4πε0r4er
 

Attachments

  • Methods HW.png
    Methods HW.png
    15.8 KB · Views: 516
Physics news on Phys.org
\mathbf{r} is not a constant.

I would suggest staying in Cartesian coordinates so that <br /> \frac{\partial \phi}{\partial x_i} = \frac1{4\pi\epsilon_0} \sum_j p_j \frac{\partial}{\partial x_i}\left(\frac{x_j}{r^3}\right) and using the results <br /> \frac{\partial r}{\partial x_i} = \frac{x_i}{r} and <br /> \frac{\partial x_j}{\partial x_i} = \begin{cases} 1, &amp; i = j, \\ 0, &amp; i \neq j.\end{cases}
 
Last edited:
pasmith said:
\mathbf{r} = r\hat{\mathbf{r}} is not a constant...
well if I plugged that in for r, wouldn't I just get

E = - (∂[p*rer/4πε0r3]/∂r)er = (p*er)/2πε0r3er ?
I haven't done vector calculus in a long time, idk if I am forgetting something obvious or what
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top