For
t \in [T_0,T_1], \dot{\theta}(T_0) = 0, \theta(T_0) = 0, R > 0, A_{max,x} > 0
Analyzing A_x. After a bit of simplification, I arrive at
|(-1)(A_T\sin(\frac{1}{2}A_T(t-T_0)^2)+A_T^2(t-T_0)^2\cos(\frac{1}{2}A_T(t-T_0)^2))| \leq \frac{|A_{max,x}|}{R} = \frac{A_{max,x}}{R}
I'm not quite sure how...