Recent content by Tony1

  1. T

    MHB Proving $\int_{0}^{\infty}{\tanh^2(t)\tanh(2t)\over t^2}\mathrm dt=2\ln 2$

    Prove that, $$\int_{0}^{\infty}{\tanh^2(t)\tanh(2t)\over t^2}\mathrm dt=\color{blue}{2\ln 2}$$
  2. T

    MHB Integral of tan^2 ln^2: $\pi/2 (1-\ln 2)$

    Show that, $$\int_{0}^{\pi/2}{\ln^2 (\tan^2 \theta)\over \pi^2+\ln^2 (\tan^2 \theta)}\mathrm d\theta=\color{red}{\pi\over 2}\color{green}(1-\ln 2)$$
  3. T

    MHB An interesting Integral = (2π)^2(ln2)

    Prove that, $$\int_{0}^{\pi/2}\ln^2\left(\ln^2 (\sin x)\over \pi^2+\ln^2 (\sin x)\right){\mathrm dx\over \tan x}=\color{blue}{(2\pi)^2\ln 2}$$
  4. T

    MHB Five, Phi and Pi in one integral = −5ϕπ

    Note $$\sin(\pi/10)={1\over 2\phi}$$ $$-{5\over 2}\cdot {\pi\over \sin(\pi/10)}=-5\pi\phi$$
  5. T

    MHB Simple closed form for integral

    How may we go about to show that, $$\int_{0}^{1}t\cos(2t\pi)\tan(t\pi)\ln[\sin(t\pi)]\mathrm dt=\color{green}{1\over \pi}\cdot\color{blue}{{\ln 2\over 2}(1-\ln 2)}$$
  6. T

    MHB Long Integral equals (π/2)^2−[2ln(2)/]π^2+ln^2(2)/(2π)

    How to show that, $$\int_{0}^{1}t^2\sec(t\pi)[1+\sin(t\pi)-\sin^2(t\pi)]\ln[\sin(t\pi)]\mathrm dt=\left({\pi\over 2}\right)^2-{\color{blue}{2\ln(2)\over \pi^2}}+\color{red}{{\ln^2(2)\over 2\pi}}$$
  7. T

    MHB Integral of sine = 27/2+ln^2(2)+ln(2)

    Hi greg1313, No, I have no solution for them, that why I am posting them for a solution.
  8. T

    MHB Integral of sine = 27/2+ln^2(2)+ln(2)

    How to prove this integral, $$\int_{0}^{2\pi}\sin\left({x\over 2}\right)\ln^2\left[\sin\left({x\over 4}\right)\sin\left({x\over 8}\right)\right]={27\over 2}+\ln^2(2)+\ln(2)$$
  9. T

    MHB Integral of product = π/9[12ln(2)−1]

    How may one show that, $$\int_{0}^{4\pi}\sin\left({x\over 2}\right)\sin\left({x\over 4}\right)\ln^2\left[\sin\left({x\over 8}\right)\right]\mathrm dx={\pi\over 9}[12\ln (2)-1]$$
  10. T

    MHB How to Verify the Complex Integral Equals π/(1+n)?

    How to prove this integral, $$\int_{0}^{2\pi}\mathrm dt{\sin t\over \sin t+ i\sqrt{n+\cos^2 t}}={\pi\over 1+n}$$ $n \ne -1$ $i=\sqrt{-1}$
  11. T

    MHB How to Solve the Arctan Integral Equal to π^2/20?

    Show that, $$\int_{0}^{\pi/6}\tan^{-1}\sqrt{2-\tan^2(x)}\mathrm dx={\pi^2\over 20}$$
  12. T

    MHB Quite complicated integral= sin(π/12)

    Given that, How to show that, $$\int_{0}^{\infty}{\cos(\pi x^2)\over {1\over 2}+\cosh\left({x\pi\over \sqrt{3}}\right)}\mathrm dx=\sin\left(\pi\over 12\right)$$
  13. T

    MHB How to Prove the Integral Result Equals ln(2) - ζ(2)/4?

    How to show that, $$8\pi\int_{0}^{\pi/2}\cos^2x\cdot{\ln^2(\tan^2 x)\over [\pi^2+\ln^2(\tan^2 x)]^2}\mathrm dx=\ln 2-{1\over 4}\zeta(2)$$
  14. T

    MHB Proving Integral: $$t-3t^3+t^5\over 1+t^4+t^8$$ $\&$ $$\ln(-\ln t)$$

    Given: A so-called complicate integral has a such a simple closed form, quite amazed me, but how to prove it, is an other story. $$\int_{0}^{1}\mathrm dt{t-3t^3+t^5\over 1+t^4+t^8}\cdot \ln(-\ln t) dt=\color{red}{{\pi\over 3\sqrt{3}}}\cdot \color{blue}{\ln 2\over 2}$$ Does anyone know to how...
  15. T

    MHB A hard integral gives a simple closed form, π/(4a)^3

    Proposed: How can we prove $(1)?$ $$\int_{0}^{\infty}\mathrm dx{\sin^2\left({a\over x}\right)\over (4a^2+x^2)^2}={\pi\over (4a)^3}\tag1$$
Back
Top