How about this: Since (d(x, y_n)) is convergent, for all \varepsilon > 0, there exists an N > 0 such that
d(x, y_n) < \frac{\varepsilon}{2}
when n > N. Therefore, when m, n > N, we have
d(y_n, y_m) \leq d(y_n, x) + d(x, y_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon...