Use differentiation to verify the integration formulas

ranger1716
Messages
17
Reaction score
0
ok, so my problem goes like this:

I have that the integral of dx/((cx+a)(dx+b))=1/(ad-bc)lnabs((dx+b)/cx+a)) + C
I have to use differentiation to verify the integration formulas.

So far I've gotten to:

D(1/(ad-bc)lnabs((dx+b)/cx+a)))=(1/ad-bc)((cx=a)/(dx+b)) => (cx+a)/((ad-bc)(dx+b))

where do I go from here to get back to the original integration formula? :confused:
 
Physics news on Phys.org
You differentiation is at fault.

if you have F = ln{f(x)/g(x)}, then

F = lnf(x) - lng(x)

dF/dx = f'/f - g'/g

where f' = df/dx, g' = dg/dx
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top