Work and Mechanical Energy & Moment of Inertia Derivation?

AI Thread Summary
The discussion focuses on deriving the expression for the moment of inertia using work and mechanical energy principles. Key equations include the work of friction, potential energy, and kinetic energy expressions. The user attempts to simplify the work equation by substituting values for potential and kinetic energy, ultimately leading to a formula involving acceleration and time. The final expression indicates a relationship between the moment of inertia, mass, and acceleration. The thread seeks clarification on the derivation process and the final equation's components.
danyalasdf
Messages
6
Reaction score
0

Homework Statement



We did something very similar to this in lab

http://webenhanced.lbcc.edu/physte/phys2ate/2A LAB HANDOUTS/Moment of Inertia.pdf

Use Work and Mechanical Energy to derive the expression for the experimentally determined moment of inertia.

Homework Equations


Wf= work of friction = Delta E = Ef - Ei

Wf= work of friction = Uf + Kf - Ui - Ki

U= Potential Energy

K = Kinetic Energy

Kf = (1/2)(m + mf)(Vf)^2 + (1/2)(I)(omegaf)^2

I = Moment of Inertia

Omegaf = angular acceleration

Average Velocity = v = (Vf + Vi)/(2)

If Neccessary

s=(1/2)*a*t^2

Torque= F*r= m*r*a

T= (mf + m)(g - a) = tension

Ui= mgh

Uf= mfgh

K(rotate) = (1/2)(I)(omegaf)^2

I = Moment of Inertia

K(linear) = (1/2)(m + mf)(Vf)^2

Experimentally Moment of Inertia

I=r^2(m((gt^2/2s)-t) - mf)

Trying to get to this ^

mf= mass effective not much meaning just mass in kg
If it confusing the gt^2 is divided by 2s then it is subtracted by t and multiplied by r^2 and then minus mf


The Attempt at a Solution



Wf = work of friction = Uf + Kf - Ui - Ki

The final potential energy and initial kinetic energy are both zero so this only leaves

Wf = Kf - Ui

Wf = ((1/2)(m + mf)(Vf)^2) + (1/2)(I)(omegaf)^2 - mgh

Wf = (1/2)(m + mf)(s/t)^2 + (1/2)(I)((s/t)*(1/r))^2 - mgh

Wf = (1/2)(m + mf)(s^2/t^2) + (1/2)(I)((.5*a*t^2)/(t) * (1/r))^2

Wf = ((1/2)(m + mf)((1/2)*(a*t^4)*(t^2)) + ((1/2)(I)(a*t) * (1/r))^2

Wf = ((1/8)(m + mf)(a^2 * t^2) + (1/8)(I)((a^2 * t^2)/(r^2))

Wf = (1/8)(a^2*t^2)((m + mf) + (I/r^2))
 
Last edited by a moderator:
Physics news on Phys.org
So...what is your question?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top