What Does One-to-One Correspondence Mean in Mathematics?

  • Thread starter Thread starter rethipher
  • Start date Start date
AI Thread Summary
One-to-one correspondence, or bijection, in mathematics refers to a relationship between two sets where each element in one set is paired with exactly one element in the other set, and vice versa. This concept is crucial in understanding functions, particularly in linear algebra, as it ensures that every element in both sets is accounted for without duplication. While one-to-one mapping (or injection) means that different elements in the domain map to different elements in the range, it does not guarantee that every element in the range is used. In contrast, a one-to-one correspondence ensures that all elements in the range are paired with elements from the domain. Understanding these distinctions is essential for a deeper comprehension of set theory and function properties.
rethipher
Messages
23
Reaction score
0
What is a one-to-one correspondence or one to one mapping? I have heard the later term used plenty of times in linear algebra classes I've taken, i.e. there is a one to one mapping from a subspace to another. But I've never really understood what that meant entirely. Are the two above phrasees the same, or different? And if they are different how are they different? Quick sidenote: this is not homework of any kind, no problems/grades or any such thing. I do self study in my down time when I'm not in school, and this came up in a math book I'm looking at and I think I need to fully understand what it means so I get the full understanding and not just a superficial understanding that I can confuse for real understanding. Thanks for your time and any answer!
 
Mathematics news on Phys.org
The wiki article on Bijection should cover it pretty thoroughly. The premise is as follows: Given two sets (collections of objects), a one-to-one correspondence (bijection) describes a construction where every element in one set is associated with one and only one element of the other set, and vice-versa. It's difficult to explain properly without the concept of a function, but I'm not sure how much set theory you've been exposed to.
 
if you think of a space as a collection of points then a one to one mapping from one space to another is a means of associating a pt in one space with a pt in another for all pts and vice versa.

A simple set example would be to associate the letters of the alphabet with the range of integers from 1 to 26. there is no letter without a corresponding number and there is no number without a corresponding letter.

wikipedia describes it in more detail:

http://en.wikipedia.org/wiki/One-to-one_correspondence
 
It's worth noting that 1-1 correspondence is not the same as 1-1 mapping.

In a 1-1 mapping, different elements of the domain go to different elements of the range.

A 1-1 correspondence is a 1-1 mapping in which every element of the range gets hit by some element of the domain.

This is a confusing bit of terminology, which is why it's better to use the terms injection and bijection. An injection is what I just defined as a 1-1 mapping. A bijection is a 1-1 correspondence.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top