Fourier Transform Power Spectrum

cscott
Messages
778
Reaction score
1
Input: sine wave at 10Hz, amplitude 1.

After the transform the plot has a spike at 10Hz with amplitude 0.5. If I vary the amplitude of the sine wave I get:

sine amp. - FT spike amp.
1 - 0.5
2 - 2
4 - 8

So it seems A' = A^2/2

Is this because power is proportional to A^2 and it is averaged over trough/crest so division by 2?
 
Physics news on Phys.org
Are you adding real and imaginary parts?

The power should be the same in both domains.
 
Sorry I think I asked my question poorly.

I'm doing this in a lab using LabVIEW and it's doing the FT. When I input a sine wave (vs time) with varied amplitude 'A', I get an output spike of amplitude (A^2)/2 centered at some fixed frequency. Is this because P \propto A^2? Is the half for 'average'?

I'm just trying to make sense of what this VI is doing. All I know is "computes the averaged auto power spectrum of time signal".

Does my data still make no sense?

I'm not directly dealing with imaginary parts...
 
Last edited:
OK- you probably forgot to add the power in -ve and +ve frequencies.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Back
Top