Ring Theory and Group Theory questions

AI Thread Summary
A 4th year physics undergraduate seeks advice on taking abstract algebra courses, specifically focusing on ring theory and group theory. The student has a strong background in physics and mathematics, including real analysis and graduate-level PDEs. There is a concern about the necessity of taking ring theory before group theory, as the course descriptions suggest a prerequisite relationship. However, responses indicate that at the introductory level, the two subjects do not rely on each other significantly. It is suggested that the student could take either course first without major issues, and that knowledge of integers mod n may be beneficial but is not crucial for understanding group theory. Overall, the consensus is that the order of taking these courses is flexible.
Coto
Messages
307
Reaction score
3
Hey everyone, I was hoping to grab some quick advice on these two topics. Specifically, I'm a 4th year physics undergrad with all the standard physics and math courses, as well as real analysis up to lebesgue measure theory/integration theory+hilbert spaces,etc., and grad level PDEs.

I have plans to take some abstract algebra courses as well as topology and a couple of other things this coming semester. Specifically for abstract algebra, I'm looking into ring theory and group theory. I understand group theory is used more in physics, however ring theory appears to be a prerequisite to the course. In the past this was never the case and you could take one without the other.

My question is, with the follow course descriptions, how much of group theory will I not be understanding without the ring theory course? Just want to get some outside advice on the subject before talking to the profs.

Ring theory:
Integers. Mathematical induction. Equivalence relations. Commutative rings, including the integers mod n, complex numbers and polynomials. The Chinese remainder theorem. Fields and integral domains. Euclidean domains, principal ideal domains and unique factorization. Quotient rings and homomorphisms. Construction of finite fields. Applications such as public domain encryption, Latin squares and designs, polynomial error detecting codes, and/or addition and multiplication of large integers.

Group theory:
Groups as a measure of symmetry. Groups of rigid motions. Frieze groups, and finite groups in 2 and 3 dimensions. Groups of matrices. Group actions with application to counting problems. Permutation groups. Subgroups, cosets, and Lagrange's Theorem. Quotient groups and homomorphisms.

Coto
 
Physics news on Phys.org
i guess there´s pretty few group therory stuff you won´t be able to gasp not knowing ring therory.
Maybe it´s a good idea to have some knowledge of the integers mod n but even that isn´t that cruicial in my opinion i don´t really see a problem taking groups without ringtheory, while ringtheory is in some sense an extension of grouptheory :)
 
It would probably be okay to take the courses in either order.
 
Ring Theory a prerequisite to Group Theory?!

Usually it's the other way around. Anyways, neither topic rely on each other at the introductory level. It doesn't matter which you take first.
 
Thanks for the advice everyone. Exactly what I was looking for.
 
After a year of thought, I decided to adjust my ratio for applying the US/EU(+UK) schools. I mostly focused on the US schools before, but things are getting complex and I found out that Europe is also a good place to study. I found some institutes that have professors with similar interests. But gaining the information is much harder than US schools (like you have to contact professors in advance etc). For your information, I have B.S. in engineering (low GPA: 3.2/4.0) in Asia - one SCI...
I graduated with a BSc in Physics in 2020. Since there were limited opportunities in my country (mostly teaching), I decided to improve my programming skills and began working in IT, first as a software engineer and later as a quality assurance engineer, where I’ve now spent about 3 years. While this career path has provided financial stability, I’ve realized that my excitement and passion aren’t really there, unlike what I felt when studying or doing research in physics. Working in IT...
Hello, I’m an undergraduate student pursuing degrees in both computer science and physics. I was wondering if anyone here has graduated with these degrees and applied to a physics graduate program. I’m curious about how graduate programs evaluated your applications. In addition, if I’m interested in doing research in quantum fields related to materials or computational physics, what kinds of undergraduate research experiences would be most valuable?
Back
Top