What Does the Curvature of Time Look Like in Our Perception?

  • Thread starter Thread starter Xeinstein
  • Start date Start date
  • Tags Tags
    Curvature Time
Xeinstein
Messages
90
Reaction score
0
We can all see what curvature of space looks like, just by throwing a ball and watching it follow the natural geodesic.

But what does curvature of time look like?

How do we experience it?

We typically experience the passage of time in what seems to be a forward linear manner. The forward part seems to be due to how our nervous system works, thus giving a chronological bias towards causality in our perception.

But if we can see how gravity curves space, then how do we percieve how it affects time?
 
Physics news on Phys.org
Xeinstein said:
We can all see what curvature of space looks like, just by throwing a ball and watching it follow the natural geodesic.
Objects in GR don't generally follow geodesics in space, they follow geodesics in spacetime, usually the paths that minimize the proper time (although I gather it can maximize it in certain cases). I'm pretty sure a ball isn't following a geodesic in space when you throw it (unless you're in flat spacetime and the ball goes in a straight line).
 
Xeinstein said:
We can all see what curvature of space looks like, just by throwing a ball and watching it follow the natural geodesic.
Sorry, that is not the curvature of space.

If you throw a ball into the air and then someone throws you into the air as well, you'll see the ball moving in a straight line relative to yourself (in the absence of air resistance, of course).

At least, that's what happens at first. If both objects remain in free-fall long enough, eventually the ball will start to change course slightly (or speed up or slow down), due to the fact that the acceleration due to gravity is not constant everywhere. Now that's the curvature of space-time.

You can't isolate the curvature of time from the curvature of space.
 
Xeinstein said:
We can all see what curvature of space looks like, just by throwing a ball and watching it follow the natural geodesic.

No. The trajectory of the ball is mainly an effect of "curved time". Curved space produces only minor effects like orbit precession and additional light bending (doubling the amount caused by "curved time" alone). But note that "curved time" is not possible, without curved space, because you cannot have only one dimension of a manifold curved. So it's best to talk about curved spacetime.

Xeinstein said:
But what does curvature of time look like?
A nice visualization:
http://www.physics.ucla.edu/demoweb..._and_general_relativity/curved_spacetime.html
More visualization links:
https://www.physicsforums.com/showpost.php?p=1557122

Xeinstein said:
How do we experience it?
- Apples falling from trees.
- Clocks going faster on a mountain than in a valley.
 
To say it another way, if the curvature of the ball's path were representative of the curvature of space, then space would be mighty curved right there, and we'd have thrown out Euclidean Geometry centuries ago. In other words, if that parabolic path represented a straight line in that region of space, then there's no way the Pythagorean Theorem would hold in that region.

As others have said, the geodesic lies in the 4-d space-time surface (manifold).
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy

Similar threads

Back
Top