Find the Probability: P(X<1/2 | Y=1)

  • Thread starter Thread starter kingwinner
  • Start date Start date
  • Tags Tags
    Probability
kingwinner
Messages
1,266
Reaction score
0

Homework Statement


Suppose X and Y are jointly continuous random variables with joint density function
f(x,y)=6x2y, 0<x<y, x+y<2
f(x,y)=0, otherwise
Find P(X<1/2 | Y=1).


Homework Equations


The Attempt at a Solution


By definition,
P(X<1/2 | Y=1)
1/2
=∫ fX|Y(x|y=1) dx
-∞

My computations:
Marginal density of Y:
fY(y)=2y^4, 0<y<1
fY(y)=2y(2-y)^3, 1<y<2


Condition density of X given Y=y:
Case 1: For given/fixed 0<y<1,
fX|Y(x|y)=3x^2 / y^3, 0<x<y

Case 2: For given/fixed 1<y<2,
fX|Y(x|y)=3x^2 / (2-y)^3, 0<x<2-y

I hope these are correct. Now P(X<1/2 | Y=1) is the troublesome case because we are given Y=1, which formula for fX|Y(x|y) should I use?


Thanks for any help!
 
Physics news on Phys.org
Your two formulas are the same at y=1, so it doesn't matter which one you use!
 
OK, but in general will they always be the same? What should we do in such a case in general?
 
If correctly derived from a given joint density function, yes, they must be the same.
 
um...Any proof about it?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top