Products of function equivalence classes

The1TL
Messages
23
Reaction score
0

Homework Statement



If f ∈ C(R) with f(0) ≠ 0, show that there exisits a g ∈ C(R) such that [fg] = [1], where [1] denotes the equivalence class containing the constant function 1.

Homework Equations





The Attempt at a Solution


Let f ∈ C(R) such that f:R → R is defined as f(x) = 1/x and let g ∈ C(R) such that g:R → R is defined as g(x) = x. Therefore [fg] = [x/x] = [1] for all x∈R.

is this correct?
 
Physics news on Phys.org
"The equivalence class containing the constant function 1" with what equivalence relation?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top