PV Diagram of a monoatomic gas and diatomic gas

  • Thread starter Thread starter Zenderson3
  • Start date Start date
  • Tags Tags
    Diagram Gas
Zenderson3
Messages
2
Reaction score
0
I'm reviewing a question on a previous test but am having trouble finding the solution for it.

We were told to draw a PV diagram of a monoatomic ideal gas that undergoes an isothermal compression from Va to Vb and then is allowed to expand adiabatically and quasistatically back to Va again.

I was able to comprehend this portion of the question fine but then got stuck on the next part that asked how this sketch would look if the molecule was diatomic. Aside from the difference in internal energy due to the degrees of freedom of a diatomic molecule I can't seem to find any other major implications of a monoatomic gas vs. a diatomic gas. Furthermore I can't seem to figure out how the internal energy of the system would tie into this diagram.
 
Physics news on Phys.org
Zenderson3 said:
I'm reviewing a question on a previous test but am having trouble finding the solution for it.

We were told to draw a PV diagram of a monoatomic ideal gas that undergoes an isothermal compression from Va to Vb and then is allowed to expand adiabatically and quasistatically back to Va again.

I was able to comprehend this portion of the question fine but then got stuck on the next part that asked how this sketch would look if the molecule was diatomic. Aside from the difference in internal energy due to the degrees of freedom of a diatomic molecule I can't seem to find any other major implications of a monoatomic gas vs. a diatomic gas. Furthermore I can't seem to figure out how the internal energy of the system would tie into this diagram.
The same work is done on or by the gases during the compression and expansion parts. But their heat capacities are different. So their changes in internal energies in the isothermal compression part will be different which means that their final internal energies will differ.

The adiabatic condition: PV^\gamma = K applies during the adiabatic expansion. Use this to determine how the adiabatic expansion path for the diatomic gas will compare to that of the monatomic gas.

AM
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top