In terms of classical physics, perpetual motion is entirely possible, it does not violate any of those laws of physics. In fact perpetual motion is basically an axiom of classical physics: Newton's first law of motion, inertia, the assumption that an object in motion will keep moving in a straight line (or keep spinning) forever unless it is acted upon by an external force.
The reason why perpetual motion is 'impossible' realistically is exactly because of that 'external force', like the ones you've listed, which eventually cause the object to stop (in our perspective). Technically, the motion is still occurring though, the motion has just shifted to density waves in the air (i.e. made a sound), or produced vibrations in the object and the surroundings (i.e. warmed stuff up), so, from this perspective, perpetual motion is impossible to avoid (simply because of the axioms of classical physics).
If you want to complete your list, you really only need to list the two fundamental forces of classical physics:
- Gravity
- Electromagnetism
Everything else will just be some form of the previous two forces. Friction and air resistance, for example, is just a manifestation of the overall electromagnetic interactions between the object with the external system.
Another more elaborate example would be a machine that uses electricity to move an object which then uses the movement to generate more electricity to move the object some more. This system eventually stops because the the electrons interact electromagnetically with the atoms in the wires to produce vibrations (i.e. increased temperature), which in turn causes the electrons to lose some of their motion.
I hope you don't feel too unsatisfied that you haven't received any formulae. Personally I don't think they would have been that useful because they'd just give you the theoretical motion of the system, not explain what seems to be the core issue, that is, why perpetual motion is 'impossible'. Not to mention the fact that you'd have to get very specific about the system, and the equations would probably get very uselessly complicated (to be honest I'd have a very hard time calculating the exact motion of something like a hammer attached to a spinning wheel).
Momentum isn't a force by the way X).