Noncommutative geometry in leaf spaces of classical physics

AI Thread Summary
Noncommutative geometry may have relevance in classical physics, particularly in the study of leaf spaces resulting from the motion of a particle on a 2-dimensional torus. When a particle is flicked at a rational angle, its orbit leads to a leaf space diffeomorphic to the circle S^1, while an irrational angle results in a singular leaf space resembling the real line. This distinction raises questions about the probability of a particle occupying specific subsets of leaves, which classical measure theory struggles to address in the irrational case. Although initially considered a natural inquiry, the relevance of determining a particle's leaf is questioned, as it may not pertain to the dynamics of the system. Overall, the discussion highlights potential intersections between noncommutative geometry and classical mechanics.
Monocles
Messages
463
Reaction score
2
I was trying to think of natural physical reasons to want to study noncommutative geometry, and it seems to me that it should be relevant even in a classical scenario. Let me know what you think of this as I am no expert. I'm not being terribly precise, either, so let me know if I should elaborate.

Let a classical particle be confined to a 2-dimensional torus V. Then if you flick the particle in a direction so that it starts moving, the particle's orbit and translates of the orbit will foliate the space, with the particle confined to a certain leaf of the foliation. Then it should be interesting to look at the leaf space under the quotient topology of this foliation, no? If the angle at which the particle flicked was rational, then the leaf space is just the circle S^1. But if the angle is irrational then the orbits are no longer diffeomorphic to the circle S^1 but are instead diffeomorphic to the real line, and the leaf space is now singular! Then in order to say anything interesting about the leaf space one must turn to noncommutative geometry (von Neumann algebras)

Leaf spaces in classical mechanics seem a natural object to study since let's say that the particle started on a uniformly-picked random leaf of the foliation and we want to know the probability that the particle is on a given subset of leaves. Then we measure how much of the leaf space that subset of leaves takes up to get the probability that the particle is on that subset of leaves. In the irrational angle case, the leaf space is singular and so the question cannot be answered with the classical measure theory of the leaf space. But it still seems like a very physical question to ask, so it seems to me that this is a natural manifestation of noncommutative geometry in classical physics.

If this really is an example of noncommutative geometry appearing in classical physics, what are some other examples? And any other comments on this topic are appreciated.
 
Physics news on Phys.org
After some further thought I do not think this is a good question. Asking 'which leaf is it on' doesn't have anything to do with the dynamics and is only dependent on where the particle started. So it is just a game of chance and not really a classical mechanics problem
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Back
Top