feihong47 said:
Homework Statement
Homework Equations
The Attempt at a Solution
I assume I can't use a calculator obviously.. so I'm quite stuck. The answer is 5, but I have no idea how to get that.
(log23)(log34)(log45) ... (log3132)
You could also approach this as follows:
Let \displaystyle y=(\log_{2}3)\,(\log_{3}4)\,(\log_{4}5)\,\dots\,( \log_{31}32)
Then, \displaystyle 2^y=2^{(\,(\log_{2}3)\,(\log_{3}4)\,(\log_{4}5)\, \dots\,( \log_{31}32)\,)}
By laws of exponents and the definition of a logarithm,
2^{(\,(\log_{2}3)\,(\log_{3}4)\,(\log_{4}5)\, \dots\,( \log_{31}32)\,)}
=\left(2^{(\log_{2}3)}\right)^{(\,(\log_{3}4)\,( \log_{4}5)\, \dots\,( \log_{31}32)\,)}
=3^{(\,(\log_{3}4)\,( \log_{4}5)\, \dots\,( \log_{31}32)\,)}
=\left(3^{(\log_{3}4)}\right)^{(\,( \log_{4}5)\, \dots\,( \log_{31}32)\,)}
=4^{(\,( \log_{4}5)\, \dots\,( \log_{31}32)\,)}
etc.
=\left(31^{(\log_{31}32)}\right)
=32