Length of acceleration for a rock fragment escaping Mars

AI Thread Summary
The discussion revolves around the physics of rock fragments escaping Mars, particularly focusing on the acceleration required to reach the escape velocity of 5.0 km/s over a distance of 4.0 meters. The calculated acceleration for the rock fragment is 3.13e6 m/s^2. There is confusion regarding the duration of this acceleration, with an initial incorrect assumption of 0.0016 seconds. The correct approach involves using the equations of motion to relate acceleration, time, and distance, ultimately leading to a resolution of the problem. The participant clarifies that their initial confusion stemmed from unit conversions rather than the calculations themselves.
flip290
Messages
14
Reaction score
0

Homework Statement



It has been suggested, and not facetiously, that life might have originated on Mars and been carried to Earth when a meteor hit Mars and blasted pieces of rock (perhaps containing primitive life) free of the surface. Astronomers know that many Martian rocks have come to Earth this way. (For information on one of these, search the Internet for “ALH 84001”.) One objection to this idea is that microbes would have to undergo an enormous, lethal acceleration during the impact. Let us investigate how large such an acceleration might be. To escape Mars, rock fragments would have to reach its escape velocity of 5.0 km/s , and this would most likely happen over a distance of about 4.0m during the impact.

a) What would the acceleration in such a rock fragment be?
I got this part! 3.13e6 m/s^2

b) How long would this acceleration last?
This the part I am confused about. I thought it was 0.0016 s but that is incorrect. Any help would be appreciated!
 
Physics news on Phys.org
Let the acceleration, in kilometers per second, of the object after after the impact be "a". Then the speed, t seconds after initial impact, is at and the distance moved is (a/2)t^2. We know that the distance is 4m= .004 km so we can solve (a/2)t^2= 4 for t in terms of a. Put that into at= 5 km/s to get an equation for a.
 
Thanks for the reply! I figured out that I actually had the right answer I was just confusing the units.
 
how did you find part A?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top