Throttling Ideal Gas: Is Temperature Change Involved?

  • Thread starter Thread starter starryskiesx
  • Start date Start date
  • Tags Tags
    Gas Ideal gas
AI Thread Summary
For an ideal gas forced through a capillary into a vacuum, temperature changes can occur due to interactions with the capillary and the gas's internal dynamics. When gas is pushed through with a piston, it can lose internal heat while gaining kinetic energy or performing work against external pressure, leading to cooling. Achieving thermal equilibrium is complex and depends on the setup and duration of the experiment. Initially, the gas will not maintain a uniform temperature until it equilibrates over time. Overall, careful consideration of experimental conditions is crucial for accurate results.
starryskiesx
Messages
6
Reaction score
0
A quick question about throttling:

I've read that for an ideal gas, if you force it through a capillary into a vacuum and allow it to equilibrate, it will experience no temperature change. I was wondering if this is correct, and if anything changes when you're forcing it through with a piston for example.
 
Physics news on Phys.org
Even with an ideal gas, this sort of thought experiment is very misleading and about impossible to make in practice...

First, the gas would take the temperature of the capillary.

Then, the gas that at some time remains in the bottle pushes the gas that goes out, gives a work, and loses internal heat. It cools down, while the flowing gas receives some work that it may transform into internal heat, depending on the experiment, or into kinetic energy, or into work against the external pressure.

It's only after a very long time that the gas may regain some form of equilibrium - between the part flown first out and the part flown last - that the temperature is uniform, and then, with a ideal gas, you may observe the same temperature as before the expansion.

So it's much more a question of setup and time than of the gas being ideal. In two words: be careful.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Back
Top