jaumzaum said:
I was solving an exercise my teacher asked us, to determinate the hibridization of the molecules. He give the molecule and I have to tell which hibridization it is. I want to know if I can do this to every molecule, I mean, are all molecules in the world hybridized? If so, why do we have to learn the geometry of s, p, d and f orbitals if all that works is the VSPER geometry for hybridized orbitals? I tried to see if the hybridized theory works and what I found out?
Water hydrogen angle is 104.5 degrees (~109.5)
NH3 angle is 107 degrees (~109.5)Although, when I compare the other molecules in further periods, it seems that the hybridization decreeases.
H2S is 92.1 degrees
H2Se is 91 degrees
H2Te is 90 degrees
PH3 93.5 degrees
AsH3 91.8 degrees
Why does it occur? Why are small molecules hybridized and bigger aren't? How can I know when a molecule will hibridizate?
In the examples that you gave, the important interaction that "causes" the hybridization is the electrostatic repulsion between the hydrogen atoms. All the compounds are two hydrogen atoms covalently bonded to a column VI (periodic table) atom. The unperturbed atomic orbitals of the column VI atoms have one pair of electrons in an s-orbital, one pair of electrons in a p orbital, and unpaired electrons in two more p orbitals. The probability distribution of the p orbitals are orthogonal to each other.
The hydrogen bonds to the VI element through the unpaired p orbitals. So if there was no interaction between the hydrogen atoms, positions of the hydrogen atoms relative to the VI compound would be 90 degrees. An "unhybridized" VI atom would have two ligands connected at 90 degrees.
However, there is an interaction that would force some degree of hybridization to the covalent bonds. This is the electrostatic repulsion of the hydrogen atoms. The VI column atom pulls electrons from the hydrogen, making the hydrogen atoms positive. The larger the angle between the two hydrogen atoms, the larger the distance between the two atoms and the weaker the electrostatic repulsion. Oxygen is the most electronegative atom of the series. The oxygen pulls on the hydrogen atoms, making them effectively positive. The positive hydrogen atoms (ions?) repel each other because like charges repel. The repulsion can be decreased only increasing the angle from 90 degrees (unhybridized p orbital) to 102 degrees (hybridized sp3).
Tellurium is much less electronegative then oxygen. You can consider tellurium as having an effective electronegativity of zero (i.e., same electonegativity as the hydrogen atoms). Therefore, the hydrogen atoms in H2Te are uncharged. Therefore, the hydrogen atoms don't repel each other. Therefore, the electrons in the Te atom don't hybridize. Therefore, the chemical bonds are comprised of unhybridized p-orbitals. Therefore, the chemical bonds are at 90 degrees to each other.
Figuring out when to use hybrid orbitals is rather complicated. The general rule of thumb is this.
The hybridization occurs to relieve some stress in the molecule caused by some type of repulsion. In the cases that you presented, the stress was due to the electrostatic repulsion of hydrogen atoms (ions?). In other cases, the stress would be due to repulsion between electrons spinning in the same direction. This would be called spin-spin interactions. In still other cases, there may be some steric forcing due to one atom being forced too close to the other. However, in all cases there is some stress that has to be relieved. I can't give you any simple rules that are also reliable. However, the examples that you gave provided a simple example. Electrostatic repulsion was the stressor in those examples.
Here are a few links that may help.
http://www.foothill.edu/psme/larson/1A_assets/Chapter%209%20-%20Hybridization.pdf
Valence Bond Theory (Hybridization)
“Central atoms do not use atomic (s, p, d, f) orbitals to form sigma bonds.
Central atoms mix or hybridize their valence atomic orbitals to form new bonding orbitals
called hybrid orbitals.
…
1. Multiple covalent bonds (double and triple) form when more then one orbital from each
atom overlap.
2. This additional overlap occurs using UNHYBRIDIZED atomic orbitals, not hybrid
orbitals. This overlap is called a pi (π) bond formation.
Sigma bond (σ): the first bond formed between two atoms.”http://www.gsjournal.net/old/science/georgiev7.pdf
“The analogy between the spin and orbital angular momentum operators is well known and the commutation relations are the same. When the chemical bond has formed, the spin of the electrons is anti-parallel by Hound’s rule. The function of two interacting atoms can be compared with the intermolecular dispersion force and has a similar function. The minimum of the function describing their interaction is at the minimum energy of the induced spin-spin interaction.”