Variation of chemical potential with T and P

AI Thread Summary
The discussion centers on the relationship between Gibbs free energy (G) and chemical potential (μ) in the context of temperature (T) and pressure (P) variations. The equation dG = -SdT + VdP + μdN accounts for changes in G due to variations in T, P, and particle number, confirming that chemical potential changes with T and P are included. When particle numbers change, associated chemical reactions can alter temperature, impacting the sdT term. The conversation also touches on the distinction between chemical potential and chemical affinity, noting that while they are related, they represent different concepts in thermodynamics. Overall, the participants clarify the complexities of chemical potential and its implications for Gibbs free energy.
Urmi Roy
Messages
743
Reaction score
1
So the expression for Gibb's free energy is:

dG = -SdT + VdP + μdN,

Here, we see that the Gibb's free energy changes with temperature (dT), change in pressure (dP) and change in chemical potential (as a result of change in particle number).

My question is: we know chemical potential varies with both change in temperature and pressure. So if we don't add/remove particles from the system, the chemical potential does change with variation of P and T...so is that already included in the above equation?

(That is, in the above equation, are we accounting for the change in Gibb's free energy as a result of change in chemical potential as a result of variation of T and P, in addition to the change in chemical potential due to change in particle number).

Further, when the number of particles changes, there might be a number of chemical reactions that take place, so the temperature T might change because of that also, which would change the sdT term at the beginning, right?

I guess I'm just having problems understanding chemical potential :-/
 
Engineering news on Phys.org
Urmi Roy said:
So the expression for Gibb's free energy is:

dG = -SdT + VdP + μdN,

Here, we see that the Gibb's free energy changes with temperature (dT), change in pressure (dP) and change in chemical potential (as a result of change in particle number).

My question is: we know chemical potential varies with both change in temperature and pressure. So if we don't add/remove particles from the system, the chemical potential does change with variation of P and T...so is that already included in the above equation?

(That is, in the above equation, are we accounting for the change in Gibb's free energy as a result of change in chemical potential as a result of variation of T and P, in addition to the change in chemical potential due to change in particle number).



Further, when the number of particles changes, there might be a number of chemical reactions that take place, so the temperature T might change because of that also, which would change the sdT term at the beginning, right?

I guess I'm just having problems understanding chemical potential :-/

The answer to all your questions is "yes", the equation for dG takes all these things into account. The Gibbs Free Energy G can be expressed as a function of T, P, and N1, ..., Nm, where m is the number of species in the solution:

G=G(T,P,N_1,...,N_m)

An infinitecimal change in G can be represented using the chain rule for partial differentiation:

dG=\frac{\partial G}{\partial T}dT+\frac{\partial G}{\partial P}dP+\frac{\partial G}{\partial N_1}dN_1+...+\frac{\partial G}{\partial N_m}dN_m
Each of the partial derivatives in this equation is a function of T, P, and the N's, with
\frac{\partial G}{\partial T}=-S
\frac{\partial G}{\partial P}=V
and
\frac{\partial G}{\partial N_i}=μ_i

I hope this helps.
 
Of course mu is a function of T and P, also.
Given that ##\mu=\partial G/\partial N## we have ##(\partial\mu /\partial T)_P=\partial^2 G/\partial N \partial T=\partial^2 G /\partial T \partial N =-(\partial S/\partial N)_P = S_m## i.e. the partial molar entropy and analogously
##(\partial \mu/\partial P)_T=V_m ## the partial molar volume.
So for fixed N, ##d\mu=-S_mdT+V_m dP##
 
  • Like
Likes pallab
Can I just go on to ask what the difference between chemical potential and chemical affinity is? They seem to , intuitively, mean the same thing but chemical potential is +ve for a reaction that's progressing and affinity is negative!

Also, is A (affinity) always the same sign as the rate of reaction?
 
##A=-\Delta G_r=-\sum \nu_i \mu_i##
were ##\nu_i## are the stochiometric coefficients of the reaction taking place.
So basically A is a weighed sum of chemical potentials.
 
  • Like
Likes 1 person
Back
Top