But as many papers show there is a gauge symmetry - and that's all what counts :-)
I don't think that you need a flat background in order to define a gauge theory.
The most famous application is LQG (for the gauge aspects we need no quantization, the classical theory is sufficient). If you rewrite GR using Ashtekar's variables you end up with a canonical formalism with three constraints which I denote
G
i(x) ~ 0
V
a(x) ~ 0
H ~ 0
The spatial diffeomorphism constraint V and the Hamiltonian constraint H are not known from ordinary gauge theories like QCD. The details of the dynamics, e.g. the kinetic energy of the fields differ, of course.
But the first constraint
G
i(x) = (DE)
i(x)
and its algebra with the gauge field A and the field strength E is
structurally identical to quark-less SU(2) QCD. This so-called Gauss law generates gauge transformations in A and E. In GR (Ashtekar's formulation) that means that gauge transformations are nothing else but local rotations of tangent space frames (E is related to the triad field).
There are other formalisms which end up with different notations but I would say all of them agree that GR can be rewritten as a theory gauging certain aspects of underlying spacetime symmetries.
You may want to have a look at
http://arxiv.org/abs/arXiv:gr-qc/9602013
On the Gauge Aspects of Gravity
F. Gronwald, F.W. Hehl
(Submitted on 8 Feb 1996)
Abstract: We give a short outline, in Sec.\ 2, of the historical development of the gauge idea as applied to internal ($U(1),\, SU(2),\dots$) and external ($R^4,\,SO(1,3),\dots$) symmetries and stress the fundamental importance of the corresponding conserved currents. In Sec.\ 3, experimental results with neutron interferometers in the gravitational field of the earth, as inter- preted by means of the equivalence principle, can be predicted by means of the Dirac equation in an accelerated and rotating reference frame. Using the Dirac equation in such a non-inertial frame, we describe how in a gauge- theoretical approach (see Table 1) the Einstein-Cartan theory, residing in a Riemann-Cartan spacetime encompassing torsion and curvature, arises as the simplest gravitational theory. This is set in contrast to the Einsteinian approach yielding general relativity in a Riemannian spacetime. In Secs.\ 4 and 5 we consider the conserved energy-momentum current of matter and gauge the associated translation subgroup. The Einsteinian teleparallelism theory which emerges is shown to be equivalent, for spinless matter and for electromagnetism, to general relativity. Having successfully gauged the translations, it is straightforward to gauge the four-dimensional affine group $R^4 \semidirect GL(4,R)$ or its Poincar\'e subgroup $R^4\semidirect SO(1,3)$. We briefly report on these results in Sec.\ 6 (metric-affine geometry) and in Sec.\ 7 (metric-affine field equations (\ref{zeroth}, \ref{first}, \ref{second})). Finally, in Sec.\ 8, we collect some models, currently under discussion, which bring life into the metric-affine gauge framework developed.