Exterior Calculus and Differential Forms?

Phrak
Messages
4,266
Reaction score
7
Would this be the right forum to pose questions on this topic?
 
Physics news on Phys.org
Phrak said:
Would this be the right forum to pose questions on this topic?

yes, it is.
 
thanks for responding robphy!

I'm looking for sinusoidal solutions to a 1-form field, A on a psuedo-Riemann manifold (-,+,+,+).

*d*d*A=0 yields a set of solutions, but I don't know if it's the most general case.

There's an operator (d + \delta)^2, where \delta = *d* called the Laplace-Beltrami that might apply as (*d*d* + d*d*)A=0.

After some very tedious expansion over time and spatial indices it collapses to the deAlembertian,
\box{A} = 0.

Which operator is most general?

Even 4th and higher order equations are available as (*d*d*d*d + d*d*d*d* + etc.)A=0.
 
Where might I find a physics forum where I could address individuals who are actually capable in this field?
 
Hello! There is a simple line in the textbook. If ##S## is a manifold, an injectively immersed submanifold ##M## of ##S## is embedded if and only if ##M## is locally closed in ##S##. Recall the definition. M is locally closed if for each point ##x\in M## there open ##U\subset S## such that ##M\cap U## is closed in ##U##. Embedding to injective immesion is simple. The opposite direction is hard. Suppose I have ##N## as source manifold and ##f:N\rightarrow S## is the injective...

Similar threads

Back
Top