Russell,
I have been slow to respond to your latest posts because I am seriously trying to understand exactly why you are baulking at the five issues I am trying to get you to accept. After considerable thought, I think I may understand what is bothering you.
Russell E. Rierson said:
Belief or non-belief is irrelevant, since unknowns definitely exist, independent of our belief.
Once again, you have made a statement which made me suspect that you were trying to muddy the issue through use of the ambiguity of the English language. I have no argument at all with what you are saying. What I find it to be is a misdirection of attention toward an issue which has no bearing at all on what I am trying to communicate; an issue which I had presumed we had no disagreement. My reactions to such things has, in the past, been to conclude that either there is something about what I am saying which you are missing or that or you are intentionally using misdirection of attention to prevent communication. You have continually assured me that you are only trying to clarify my position. I am going to continue to take you at your word.
Belief and/or non-belief is always an issue in any communication because people invariably believe they know what the words they are using mean. Very few people are aware of the shear volume of assumptions in that belief. That is, in fact, the first hurdle we have to get over. Once we can get the discussion into mathematics proper, communication should get much easier.
Assuming our only real problem is miscommunication, I suspect it may be due to your misinterpretation of what I am trying to do. One problem I have always had is the fact that everyone presumes I am trying to present a theory. I am not! I am trying to present a careful analysis of the problem of creating an explanation itself. That is the reason I have to move to the abstract.
Essentially, almost every complaint you have put forward could be categorized as an attempt to clarify my assumptions. That desire on your part is very understandable as all scientists are trained to be very careful about their assumptions. The real difficulty here is that I am doing the very best I can to make no assumptions at all and you find that approach very difficult to comprehend. That is exactly the reason why I cannot get the attention of any professional scientist. His mind is utterly closed to the idea that any success is to be found down that rabbit hole!
It is the assumption of the scientific community that absolutely nothing of consequence can be deduced from such an approach. As a result no one who has been trained in science has ever taken the trouble to look down that hole! I have looked and found astonishing consequences. Not a theory but fundamental constraints on theories themselves which yield far reaching consequences. It both closes and opens many doors in the realm of imaginative thought.
I have said, several times I think, that I want to show you a derivation of physics from first principals. In order to do that, I must first get across exactly what I mean by "first principals". That is what I have been attempting to do. In actual fact, the entire derivation is presented in messages #3 and #4 of this thread. Once you understand exactly what is being said there, the only problem which remains is to actually examine the solutions to that "fundamental equation".
All I really ask of you is that you accept, as first principals, the four things that derivation is based on. The word used for that acceptance is a rather mundane issue; whether it be "belief", "acceptance", "understanding" or whatever, the real issue is, will you work with it? The first thing is acceptance of mathematics as a good communication medium: i.e., that mathematical terms are well understood. From our current discussion, I don't think you have any real argument with that so, please, let's drop opposition to the suggestion that it is a fundamental first principal.
The other three issues are the definitions of A, B and C. I think you want these issues to be clarified when, in actual fact, clarifying them essentially amounts to making assumptions about them. If I make any assumptions, then I am limiting the applicability of my deductions and I have no wish to do so. In order for you to seriously argue with my deduction, you must show that some step in my deduction is not possible without clarifying what A, B and C stand for (beyond the definitions I have specified).
The final critical lynch pin in the deduction might be called a "labeling axiom". That would be the fact that I assume all significant issues represented by A, B or C can be referred to with labels. That it is not necessary to make any specification as to what these labels actually refer to beyond the fact that they are significant issues. The central issue of the deduction is that I can deal with all significant issues without knowing what they actually are.
If that is my intention, just exactly how do you expect me to explain to you what they are? I have identified the categories they refer to and the relationship between them: i.e., why I want to talk about three different aspects of explanation. Beyond that I cannot go.
1) A is what is to be explained!
2) C is what we have to work with!
3) B is a subset of C which we will use to test the validity of our model.
The first step is to accept the "first principals" as I have presented them. The second step is to understand, in detail, the derivation given in message #3 and #4: how it is a direct consequence of being able to label the significant elements of A, B, and C and nothing else.
Once you understand the necessity of the fundamental equation, then we can look at the solutions to that equation and learn a lot about what we can and cannot know.
Only with regard to clarifying your impressions, I will respond to some of your other comments: i.e., I am not trying to continue an argument with you by what follows; only trying to clarify my position.
Russell E. Rierson said:
So B is a way to "test" the validity of our explanation for A, iff, my interpretation of the Dr. D explication of B, is correct...
No! B constitutes that information which is used to verify the validity of our expectations. It is not the "way" to test the validity. The way to test the validity is to generate expectations for B a subtly different issue.
Russell E. Rierson said:
Ambiguity rears its ugly head once again Dr. D. Why are you saying that mathematical "definitions" are beliefs?
Yes, English is quite ambiguous! The belief I was referring to was the belief that the specific definitions are acceptable: i.e., that they do indeed fulfill the requirements of a definition. If you are a rational person, you must accept the fact that errors can be made. It is entirely possible that, via some subtle thing accidentally missed, a presumed valid definition will later turn out to be internally inconsistent. Acceptance that the definition is without error clearly constitutes a "belief". In fact, thinking you have made no deduction errors constitutes a "belief"; any mathematics and/or logic is just chock full of "beliefs"!
Russell E. Rierson said:
Therefore A is an undefined variable, an identity operator, or an entity, such, that what relations can be known about A, must be necessarily true on logical or analytic grounds. If you can't mentally grasp that logical necessity, then, with all due respect, "your construction" is "SOL".
What my fundamental equation says,
it says about our expectations of B. It only applies to A because of the relationship that the significant aspects of B which can be referred to are, by definition, constrained to be significant aspects of A which can be referred to! The fundamental equation is a logical consequence of the fact that the significant aspects of B may be labeled and nothing else!
At no point do I ever say anything about knowing something about A! Whatever A is, it is a totally open issue! If you close that issue in any way, you remove the generality of the deduction.
Russell E. Rierson said:
Doctordick said:
No, B is neither the abstract model nor the equations! B is whatever it is that we are going to use to defend our model's validity!
B is a subset of C about which we need to create "expectations", ...your words. Make up your mind Doc. You can't have yer cake and eat it too
It appears here that you are confusing a subset of the information we have to work with, with our abstract model and/or the equations specifying that abstract model. They are very different things.
Russell E. Rierson said:
Thanks for the clarification Dr. D. Yes, I wasn't completely sure about what you ment by saying "C is the information we have", and I assumed it was a set of known/understood quantities. You are correct IMHO, information can exist without understanding.
Communication can sometimes be very difficult. Somehow I have failed to communicate the idea that A, B and C are all completely unknown. This is very different from our model which, since we created it, must be known. Likewise, the fundamental equation is also a very known thing!
I hope I have cleared something up here. I would like to believe we are getting somewhere. I would seriously like to get to the defense or the fact that the fundamental equation is indeed a necessary consequence of the "labeling axiom.
Have fun -- Dick