If objects are accelerating, are we measuring the systems getting smaller?

AI Thread Summary
The discussion centers on the implications of the universe's expansion and whether this leads to observable changes in the size and brightness of distant objects. Participants note that while galaxies are indeed moving away and becoming dimmer, the changes are minuscule on human time scales, making them nearly impossible to detect. A hypothetical scenario involving a galaxy moving at a fraction of the speed of light illustrates the negligible impact of distance changes over time. The conversation emphasizes the impracticality of measuring such small variations, as current technology lacks the precision needed for accurate distance measurements. Ultimately, the discussion highlights the vastness of the universe and the challenges in observing its dynamics.
NWH
Messages
107
Reaction score
0
What the title implies, with the discovery that the universe is expanding, are we observing the systems becoming harder to see? You'd think that with the speed of the objects and the distances involved, things like brightness and actual size would be getting reduced...
 
Space news on Phys.org
What observational test would you propose to affirm that hyposthesis?
 
NWH said:
What the title implies, with the discovery that the universe is expanding, are we observing the systems becoming harder to see? You'd think that with the speed of the objects and the distances involved, things like brightness and actual size would be getting reduced...
Well, yes, but on human time scales, the differences are so miniscule as to be inconsequential.

Consider, for instance that we imagine that a galaxy that is one billion light years away is traveling at 0.1c away from us (this is just a number I pulled out of my backside...it's probably way, way wrong, so don't take it seriously).

Now, at this distance, if we wait for ten years, the galaxy will be a whole extra light year further away. One light year out of a billion. So sure, it's getting further away, and therefore dimmer and smaller. But it's just not going to be noticeable.
 
I find it hard to understand how the change is insignificant and can't be tested. Say for example, one of our planets fell out of orbit and started flying out of the solar system. We'd noticably see the object getting smaller and fainter, the further it got from the Earth. Now, if these distant objects are large enough and bright enough to be seen, and are accelerating away from us at such high speeds, why can't it be detected exactly?

If I take a picture of an apple, I can use the ammout of pixels in the image to determine it's apparent size in relation to another image of the same apple in which it is further away. Can't that same idea apply to this concept given that the image was at a high enough resolution to mark out noticable change?
 
NWH said:
I find it hard to understand how the change is insignificant and can't be tested..

The Hubble Law change in distance amounts to 1/140 of one percent every million years.

We can't measure distances to far-off galaxies with an accuracy of 1/140 of one percent, instruments and techniques are not even close to that level of precision.

But if we could determine distances to 1/140 of one percent, then your idea would work. We could just wait a million years and see if the distance changed (by brightness and size clues, just as you suggested!) But that is obviously impractical.

There are better ways to test Hubble Law expansion than what you propose (waiting for a measurable change in distance to show up). I hope you don't find this so hard to understand now. Your idea is impractical by a factor of about a million, to put it simply.
 
Last edited:
I see, thanks. It's hard to comprehend how insignificant it actually is, when we're talking about enormous bodies, at enormous distances and enormous speeds. You'd think you'd see at least something, puts into perspective just how BIG this universe is...
 
Abstract The Event Horizon Telescope (EHT) has significantly advanced our ability to study black holes, achieving unprecedented spatial resolution and revealing horizon-scale structures. Notably, these observations feature a distinctive dark shadow—primarily arising from faint jet emissions—surrounded by a bright photon ring. Anticipated upgrades of the EHT promise substantial improvements in dynamic range, enabling deeper exploration of low-background regions, particularly the inner shadow...
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
Back
Top