Just for giggles, check out the LaTeX output
as it was introduced almost six years ago. (Wow...)
Open it in a new tab or window, and compare to the output today:
<br />
\frac{1}{2}<br />
<br />
R^a{}_{bcd}<br />
<br />
\nabla \times C<br />
<br />
\mathbb{RC}<br />
\lambda_j = \vec{\lambda} \cdot \vec{e}_j
\lambda_j = \mathbf{\lambda} \cdot \mathbf{e}_j
<br />
v(t) = v_0 + \frac{1}{2} a t^2<br />
<br />
\gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}}<br />
<br />
\ddot{x} = \frac {d^2x} {dt^2}<br />
<br />
\overline{x} <br />
\hat{x}<br />
\check{x} <br />
\tilde{x} <br />
\acute{x} <br />
\grave{x} <br />
\dot{x} <br />
\ddot{x} <br />
\breve{x} <br />
\bar{x} <br />
\vec{x}<br />
\underline{x}<br />
<br />
\begin{align*}<br />
ab\\<br />
a b\\<br />
a\! b\\<br />
a\, b\\<br />
a\: b\\<br />
a\; b\\<br />
\end{align*}<br />
<br />
\begin{multline*}<br />
a + b + c + d + e + f\\<br />
+g+h+i+j+k+l+m+n<br />
\end{multline*}<br />
<br />
\begin{gather*}<br />
a_1 = b_1 + c_1\\<br />
a_2 = b_2 + c_2 - d_2 + e_2<br />
\end{gather*}<br />
<br />
e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = \lim_{n\rightarrow\infty} (1+x/n)^n<br />
<br />
\int_{0}^{1} x dx = \left[ \frac{1}{2}x^2 \right]_{0}^{1} = \frac{1}{2}<br />
<br />
L = \int_a^b \left( g_{\it ij} \dot u^i \dot u^j \right)^{1/2} dt<br />
<br />
\iiint f(x,y,z)\,dx\,dy\,dz<br />
<br />
\lim_{\substack{x\rightarrow 0\\y\rightarrow 0}} f(x,y)<br />
<br />
\idotsint_\textrm{paths} \exp{(iS(x,\dot{x})/\hbar)}\, \mathcal{D}x<br />
<br />
A \alpha B \beta \Gamma \gamma \Delta \delta \dots \Phi \phi X \chi \Psi \psi \Omega \omega<br />
<br />
\Gamma^l_{ki} = \frac{1}{2} g^{lj} (\partial_k g_{ij} + \partial_i g_{jk} - \partial_j g_{ki})<br />
<br />
\sigma_{3} = \left(<br />
\begin{array}{cc}<br />
1 & 0\\<br />
0 & -1<br />
\end{array}<br />
\right)<br />
<br />
\begin{align*}<br />
u &= \ln x \quad & dv &= x\,dx \\<br />
du &= \mbox{$\frac{1}{x}\,dx$} & v &= \mbox{$\frac{1}{2} x^2$}<br />
\end{align*}<br />
<br />
\newcommand{\pd}[3]{ \frac{ \partial^{#3}{#1} }{ \partial {#2}^{#3} } }<br />
<br />
i \hbar \pd{\Psi}{t}{} =<br />
- \frac{\hbar^2}{2 m} \ \pd{\Psi}{x}{2} + V \Psi<br />
<br />
\newcommand{\mean}[1]{{<\!\!{#1}\!\!>}}<br />
\newcommand{\braket}[2]{{<\!\!{#1|#2}\!\!>}}<br />
\newcommand{\braketop}[3]{{<\!\!{#1|\hat{#2}|#3}\!\!>}}<br />
<br />
\braket{\phi}{\psi} \equiv \int \phi^*(x) \psi(x)\,dx<br />
<br />
\begin{array}{l | c|c|c|c |} \ &\overline{A}\,\overline{B}&A\,\overline{B}&\overline{A}\, B&A\, B\\<br />
\hline<br />
\overline{C}&0&1&0&0\\<br />
\hline C&1&0&1&1\\<br />
\hline<br />
\end{array}<br />
<br />
\begin{equation*}<br />
\begin{split}<br />
\tau &= \tau_1+\tau_2 = \sqrt{{\Delta t_1}^2-{\Delta x_1}^2}+<br />
\sqrt{{\Delta t_2}^2-{\Delta x_2}^2} \\<br />
&= \sqrt{(5-0)^2-(4-0)^2}+\sqrt{(10-5)^2-(0-4)^2}\\<br />
&= 3+3 = 6<br />
\end{split}<br />
\end{equation*}<br />
- Warren