Office_Shredder
Staff Emeritus
Science Advisor
Gold Member
- 5,705
- 1,589
Here's my attempt at #4. I feel like there's a good chance that I am just getting confused by a definition though, or I'm assuming something is obvious that is not.
I'm going to use ##x## to denote ##x_1,...,x_n##m
let's start with if ##Y## is irreducible then ##I(Y)## is prime. If it's not prime, then there exists ##f##, ##g## polynomials such that ##fg\in I(Y)## but neither of ##f## or ##g## are. This means ##fg=0## exactly on ##Y##. If ##f(x)g(x)=0## then either ##f(x)=0## or ##g(x)=0##. Let ##Y_1=V(f)## be the set of points where ##f=0##, and ##Y_2=V(g)## be the set of points where ##g=0##. Then ##Y=Y_1 \cup Y_2##. Since neither of ##f## or ##g## are in ##I(Y)##, this means neither of ##Y_1## or ##Y_2## are equal to ##Y##, a contradiction to it being irreducible.
Now suppose ##I(Y)## is prime. Suppose ##Y=Y_1\cup Y_2## for two smaller varieties. Then ##I(Y) \subset I(Y_1)## and ##I(Y) \subset I(Y_2)## are strict inclusions . Then Let ##f\in I(Y_1)## and ##g\in I(Y_2)##. Then for any ##x\in Y##, either ##x\in Y_1## and ##f(x)=0##, or ##x\in Y_2## and ##g(x)=0##. Hence ##fg=0## for all ##x\in Y##, which means ##fg\in I(Y)##. But this is a contradiction to ##I(Y)## being prime, hence ##Y## must be irreducible.
let's start with if ##Y## is irreducible then ##I(Y)## is prime. If it's not prime, then there exists ##f##, ##g## polynomials such that ##fg\in I(Y)## but neither of ##f## or ##g## are. This means ##fg=0## exactly on ##Y##. If ##f(x)g(x)=0## then either ##f(x)=0## or ##g(x)=0##. Let ##Y_1=V(f)## be the set of points where ##f=0##, and ##Y_2=V(g)## be the set of points where ##g=0##. Then ##Y=Y_1 \cup Y_2##. Since neither of ##f## or ##g## are in ##I(Y)##, this means neither of ##Y_1## or ##Y_2## are equal to ##Y##, a contradiction to it being irreducible.
Now suppose ##I(Y)## is prime. Suppose ##Y=Y_1\cup Y_2## for two smaller varieties. Then ##I(Y) \subset I(Y_1)## and ##I(Y) \subset I(Y_2)## are strict inclusions . Then Let ##f\in I(Y_1)## and ##g\in I(Y_2)##. Then for any ##x\in Y##, either ##x\in Y_1## and ##f(x)=0##, or ##x\in Y_2## and ##g(x)=0##. Hence ##fg=0## for all ##x\in Y##, which means ##fg\in I(Y)##. But this is a contradiction to ##I(Y)## being prime, hence ##Y## must be irreducible.