Since you insist, I will try to explain this more clearly. First to try and clear up some ambiguities in your very own description. here is a diagram that will help clarify what I talk about:
http://www.maths.surrey.ac.uk/explore/michaelspages/Spin.htm
It is CRUCIAL, that you specify which rotation you talk about when you say they rotate. Your bicycle, and just about any other everyday rotating object, have only one axis of rotation, which is why precession is not very commonly observed in these objects.
Opus_723 said:
I get that tops and gyroscopes and such rotate around the vertical faster as they slow down.
so this is an example that makes absolutely no sense when you consider the diagram. What rotation around vertical from which set of coordinates? and what slows down as a result?
Opus_723 said:
I can even see, looking at the acceleration vectors along the rim of a wheel under torque, that a point on the wheel with a small ω would spend more time under acceleration, and thus end up with a greater maximum perpendicular velocity compared to a wheel with greater ω and the same torque.
That's not completely true, or perhaps I misunderstand the way you write this. The angular velocity at any point, on a solid wheel, is related to linear velocity by:
ω = v x r. Let's just ignore the cross product and say its just v.r (i.e. circularly symmetric case). the angular velocity at each point on the wheel is the same; that is to say if you draw a radial line, from the centre of the circle to the outer edge, then this line travels around the circle at the same rate (as one entity). so at a point where r is small, v must be large so that ω is constant along this line. similarly at large r, v is smaller to compensate.
Opus_723 said:
But what bugs me is that, using this formula and that vector approach, as the angular momentum approaches zero, the precession velocity would go to infinity. Everyday experience seems to contradict this. If I hold a bicycle wheel that is just barely spinning, and I apply a torque to it, it doesn't shoot off to the side at near infinite speed!
OK so let's first establish that precession doesn't happen in a wheel, unless you get very creative with it and exert an angular momentum along another axis other than it's own centre.
lets go back to the diagram I linked for you. Now imagine you are standing at the top of the z' (PRIMED!) axis, on the very top of the spinning top. Imagine now that some very good person has set up a flag above the z-axis (unprimed!) so that you can look around and see this flag. You will now notice that the flag appears to be rotating around you at some rate \varphi. That is to say if you have a stopwatch, and press start when you see it right in front of you (while standing still) then some time later, you will see it again, and so you can count how fast it goes around you.
Now let's imagine that gravity forces an acceleration in the negative z-axis (UNPRIMED!). And now you have finished your juice, and are happy to go for a walk. Let's also imagine you have a hovering skateboard from "back to the future" and the disk's rotation doesn't take you with it as you move about. If you now go the outermost point on the disk, and hold up a pendulum, you will notice the pendulum will stay completely parallel to the z-axis (unprimed) it is a bit hard to imagine this I guess. Nonetheless the next step is the bottom line, and I really hope you will get it. Imagine the time stops now; the force of acceleration that you observe where you stand, points in such a way as to make the angle \vartheta, that the top makes with the z-axis, large. In other words it wants the top to drop perpendicularly to the ground. However if you let time pass now, and arrive at the opposite side of where you were at just before when the time stopped, the force that want's to ground the top points in exactly the opposite direction. So long as the rotation about the z-axis is fast, you can say that on average, the force that wants to make the top drop to the ground is zero (cancels in all directions due to symmetry).
This is a very simple analysis and that is why one cannot explain what the role of ψ is here. So what do we actually mean by precession? We mean that over time this angle θ starts to get bigger as the top cannot continue its motion indefinitely, perhaps due to friction or other sources. The downward forces eventually dominate and the top drops down.
It may be possible to enforce this type of motion on a wheel for a very short time. put the wheel on its side on the ground (flat ground like wood or so). then hold up the wheel by just one side at say 70 degrees to the horizontal, so that one side is on the ground and the other in your hand. now push the side that you are holding the wheel in your hand strongly such as to make the wheel roll, as you would usually(but at 70 degrees). You will notice that the wheel will not immediately drop, but will start spinning around its centre, as well as around a big imaginary circle like shape on the flour, but eventually it hits the flour. we say the wheel precessed around its axis of rotation before coming to rest.