Question regarding Greens theorem

Kuma
Messages
129
Reaction score
0

Homework Statement



I have some questions similar to this one. I have to just provide reasoning as to why this can or cannot be evaluated using greens theorem.

given f = x/sqrt(x^2+y^2) dx + y/sqrt(x^2+y^2) dy, and the curve c is the unit circle around the origin. Why can/cannot the integral of f around c be evaluated using greens theorem?

Homework Equations


The Attempt at a Solution



So I said that because taking P as the first term and Q as the second term of f, they both don't have continuous first order partials on c (which is a condition for greens theorem) because there are restrictions on what x and y can be (ie x^2 + y^2 > 0). I'm not sure if that is right though if someone can clarify.
 
Physics news on Phys.org
Kuma said:

Homework Statement



I have some questions similar to this one. I have to just provide reasoning as to why this can or cannot be evaluated using greens theorem.

given f = x/sqrt(x^2+y^2) dx + y/sqrt(x^2+y^2) dy, and the curve c is the unit circle around the origin. Why can/cannot the integral of f around c be evaluated using greens theorem?


Homework Equations




The Attempt at a Solution



So I said that because taking P as the first term and Q as the second term of f, they both don't have continuous first order partials on c (which is a condition for greens theorem) because there are restrictions on what x and y can be (ie x^2 + y^2 > 0). I'm not sure if that is right though if someone can clarify.

That's the right idea. P and Q must have continuous partials on an open region containing C and its interior, not just on C. And the problem with the partials is at (0,0).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top