How many additive cosets exist for the ideal I in the subring R?

  • Thread starter Thread starter e179285
  • Start date Start date
  • Tags Tags
    Cosets
e179285
Messages
24
Reaction score
0
Let R be the subring {x + yi : x, y in 2Z} of C, and
let I be the ideal {x + yi : x,y in 2Z}of R.
How many additive cosets has I in R? List them clearly.

I know definition of ideal but ı don't know how to write in set is that question describe.Please help :)
 
Physics news on Phys.org
Did you make a typo?? The way you wrote it implies that I=R.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top