The integral of the convolution between functions f

AI Thread Summary
The discussion revolves around proving that the integral of the convolution of two functions f and g equals the product of their integrals. A user seeks assistance and shares their approach using Fubini's theorem, demonstrating the steps leading to the conclusion. They clarify that a misunderstanding regarding variable translation affected their initial proof attempt. The conversation highlights the importance of recognizing the impact of integration domains on the value of integrals. Ultimately, the user expresses gratitude for the clarification received.
muzialis
Messages
156
Reaction score
1
Hello there,

I am really struggling to prove that
"The integral of the convolution between functions f and gequals the product of their integrals", http://en.wikipedia.org/wiki/Convolution#Integration
Can anybody give me a hint?

Many thanks
 
Mathematics news on Phys.org


What did you try?? Where are you stuck?
 


∫{∫f(y)g(x-y)dy}dx = ∫f(y){∫g(y-x)dx}dy (Fubini)
= ∫f(y){∫g(u)du)}dy = ∫f(y)dy∫g(u)du
 


Thanks very muhc for your help.
I was following the line given by Mathman, but did not realize that the variable translation would not affcet the value of the integral as the integration domain is the whole real line, many thanks
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top