- 24,753
- 794
Sergei Alexandrov is one of the Utrecht people
http://www.arxiv.org/abs/gr-qc/0510050
Reality conditions for Ashtekar gravity from Lorentz-covariant formulation
Sergei Alexandrov
14 pages
ITP-UU-05/45, SPIN-05/31
"We show the equivalence of the Lorentz-covariant canonical formulation considered for the Immirzi parameter beta = i to the selfdual Ashtekar gravity. We also propose to deal with the reality conditions in terms of Dirac brackets derived from the covariant formulation and defined on an extended phase space which involves, besides the selfdual variables, also their anti-selfdual counterparts."
If I remember, he was getting his PhD in String at Paris around 2002 or 2003, when he was also sometimes co-authoring in loop/foam with Etera Livine. Then he went to Utrecht for postdoc. All this time he is refusing to go along with anybody and take conventional approaches. He liked to do LQG and spinfoam but only in his own way. He suggests that when Astekar at the beginning put the Immirzi equal to square root -1 this was right and that later Ashtekar and the others took the wrong turn by making Immirzi real. To me Sergei seems determined to eventually prove that his way is right and that everybody else took the wrong turn of the road. I admire what I interpret as a polite independence of thought and civilized willingness to take risks.
here's a picture of Sergei
http://www1.phys.uu.nl/spinoza/members/Sergei.htm
In the acknowledgments he appreciates talks with two other Utrecht people Loll and Hanno Sahlmann.
===============
We all know that in a sense Lee Smolin is chained to a rock and the tide is coming in----the tide called GLAST.
From the core version of LQG, as Smolin presents it, there is a prediction that the speed of light should depend slightly on the energy of the photon. Very energetic photons should go just enough faster that after a GRB blast has traveled for a billion years the harder more energetic one should arrive just a little early.
We have Smolin's "Falsifiable Predictions..." paper assuring us. Now John Ellis and Nick Mavromatos would like to constrain or narrow down the amount of that speed-variation. The more they narrow it the more they pinch LQG.
Or think of it as a tide of data, for photons of higher and higher energy, that still inexorably confirms that they are traveling at indistinguishable speed---all seem so far to be traveling same speed----and the energy level at which one has checked this is rising. Anyway that is the cartoon version.
So let's look at the latest in this story, just posted today:
http://www.arxiv.org/abs/astro-ph/0510172
Robust Limits on Lorentz Violation from Gamma-Ray Bursts
John Ellis (CERN), Nick E. Mavromatos (King's Coll., London), Dimitri V. Nanopoulos (Texas A-M & HARC, Woodlands & Athens Academy), Alexander S. Sakharov (CERN & ETHZ), Edward K.G. Sarkisyan (CERN & Univ. Manchester)
18 pages, 4 figures
"We constrain the possibility of a non-trivial refractive index in free space corresponding to an energy-dependent velocity of light:c(E) \simeq c_0 (1 - E/M), where M is a mass scale that might represent effect of quantum-gravitational space-time foam, using the arrival times of sharp features observed in the intensities of radiation with different energies from a large sample of gamma-ray bursters (GRBs) with known redshifts. We use wavelet techniques to identify genuine features, which we confirm in simulations with artificial added noise. Using the weighted averages of the time-lags calculated using correlated features in all the GRB light curves, we find a systematic tendency for more energetic photons to arrive earlier. However, there is a very strong correlation between the parameters characterizing an intrinsic time-lag at the source and a distance-dependent propagation effect. Moreover, the significance of the earlier arrival times is less evident for a subsample of more robust spectral structures. Allowing for intrinsic stochastic time-lags in these features, we establish a statistically robust lower limit: M > 0.9x10^{16} GeV on the scale of violation of Lorentz invariance."
==============
I am very surprised to see this:
"...Using the weighted averages of the time-lags calculated using correlated features in all the GRB light curves, we find a systematic tendency for more energetic photons to arrive earlier. However..."
From Ellis and Mavromatos I only remember seeing observations ruling out any variation in the speed of light with energy----and this is consistent in spirit with their "However..."
It is very surprising to see that this time they allow for a slight possible tendency for the more energetic ones to arrive earlier.
Maybe the tide is destined to rise only so far up the rock where Smolin is chained, and he will survive this test. It only takes just a very tiny variation, so that the more energetic ones (these super hard gammarays) arrive (after all have been traveling a billion years) just a very tiny bit before the others.
============
John Baez student named Derek Wise has posted a 61 page paper:
http://www.arxiv.org/abs/gr-qc/0510033
Lattice p-Form Electromagnetism and Chain Field Theory
"... 'chain field theory' -- a theory analogous to topological quantum field theory, but with chain complexes replacing manifolds..."
Thanks to Spin_Network for pointing out this preprint and providing some background:
In this post
https://www.physicsforums.com/showthread.php?p=782595#post782595
SN recalled this from Baez on SPR
http://groups.google.com/group/sci....group%3Dsci.physics.research#efe70e642e41021f[/QUOTE]
http://www.arxiv.org/abs/gr-qc/0510050
Reality conditions for Ashtekar gravity from Lorentz-covariant formulation
Sergei Alexandrov
14 pages
ITP-UU-05/45, SPIN-05/31
"We show the equivalence of the Lorentz-covariant canonical formulation considered for the Immirzi parameter beta = i to the selfdual Ashtekar gravity. We also propose to deal with the reality conditions in terms of Dirac brackets derived from the covariant formulation and defined on an extended phase space which involves, besides the selfdual variables, also their anti-selfdual counterparts."
If I remember, he was getting his PhD in String at Paris around 2002 or 2003, when he was also sometimes co-authoring in loop/foam with Etera Livine. Then he went to Utrecht for postdoc. All this time he is refusing to go along with anybody and take conventional approaches. He liked to do LQG and spinfoam but only in his own way. He suggests that when Astekar at the beginning put the Immirzi equal to square root -1 this was right and that later Ashtekar and the others took the wrong turn by making Immirzi real. To me Sergei seems determined to eventually prove that his way is right and that everybody else took the wrong turn of the road. I admire what I interpret as a polite independence of thought and civilized willingness to take risks.
here's a picture of Sergei
http://www1.phys.uu.nl/spinoza/members/Sergei.htm
In the acknowledgments he appreciates talks with two other Utrecht people Loll and Hanno Sahlmann.
===============
We all know that in a sense Lee Smolin is chained to a rock and the tide is coming in----the tide called GLAST.
From the core version of LQG, as Smolin presents it, there is a prediction that the speed of light should depend slightly on the energy of the photon. Very energetic photons should go just enough faster that after a GRB blast has traveled for a billion years the harder more energetic one should arrive just a little early.
We have Smolin's "Falsifiable Predictions..." paper assuring us. Now John Ellis and Nick Mavromatos would like to constrain or narrow down the amount of that speed-variation. The more they narrow it the more they pinch LQG.
Or think of it as a tide of data, for photons of higher and higher energy, that still inexorably confirms that they are traveling at indistinguishable speed---all seem so far to be traveling same speed----and the energy level at which one has checked this is rising. Anyway that is the cartoon version.
So let's look at the latest in this story, just posted today:
http://www.arxiv.org/abs/astro-ph/0510172
Robust Limits on Lorentz Violation from Gamma-Ray Bursts
John Ellis (CERN), Nick E. Mavromatos (King's Coll., London), Dimitri V. Nanopoulos (Texas A-M & HARC, Woodlands & Athens Academy), Alexander S. Sakharov (CERN & ETHZ), Edward K.G. Sarkisyan (CERN & Univ. Manchester)
18 pages, 4 figures
"We constrain the possibility of a non-trivial refractive index in free space corresponding to an energy-dependent velocity of light:c(E) \simeq c_0 (1 - E/M), where M is a mass scale that might represent effect of quantum-gravitational space-time foam, using the arrival times of sharp features observed in the intensities of radiation with different energies from a large sample of gamma-ray bursters (GRBs) with known redshifts. We use wavelet techniques to identify genuine features, which we confirm in simulations with artificial added noise. Using the weighted averages of the time-lags calculated using correlated features in all the GRB light curves, we find a systematic tendency for more energetic photons to arrive earlier. However, there is a very strong correlation between the parameters characterizing an intrinsic time-lag at the source and a distance-dependent propagation effect. Moreover, the significance of the earlier arrival times is less evident for a subsample of more robust spectral structures. Allowing for intrinsic stochastic time-lags in these features, we establish a statistically robust lower limit: M > 0.9x10^{16} GeV on the scale of violation of Lorentz invariance."
==============
I am very surprised to see this:
"...Using the weighted averages of the time-lags calculated using correlated features in all the GRB light curves, we find a systematic tendency for more energetic photons to arrive earlier. However..."
From Ellis and Mavromatos I only remember seeing observations ruling out any variation in the speed of light with energy----and this is consistent in spirit with their "However..."
It is very surprising to see that this time they allow for a slight possible tendency for the more energetic ones to arrive earlier.
Maybe the tide is destined to rise only so far up the rock where Smolin is chained, and he will survive this test. It only takes just a very tiny variation, so that the more energetic ones (these super hard gammarays) arrive (after all have been traveling a billion years) just a very tiny bit before the others.
============
John Baez student named Derek Wise has posted a 61 page paper:
http://www.arxiv.org/abs/gr-qc/0510033
Lattice p-Form Electromagnetism and Chain Field Theory
"... 'chain field theory' -- a theory analogous to topological quantum field theory, but with chain complexes replacing manifolds..."
Thanks to Spin_Network for pointing out this preprint and providing some background:
In this post
https://www.physicsforums.com/showthread.php?p=782595#post782595
SN recalled this from Baez on SPR
http://groups.google.com/group/sci....group%3Dsci.physics.research#efe70e642e41021f[/QUOTE]
Last edited by a moderator: