Summation Equation, Trying to solve this recurrence forumla.

AI Thread Summary
The discussion revolves around solving a recurrence formula to predict the number of cups hit in beer pong based on shot percentage. The recursive formula presented is C(t) = C(a^2 * t) + 2at, leading to a summation equation for calculating the expected number of cups per round. The key insight involves understanding the probabilities associated with making shots and the extra turns granted for consecutive successful shots. The final derived formula for the expected number of cups is a/(1-a), where 'a' represents the shot percentage. This formula provides a clear method for calculating the expected outcome in beer pong based on shooting accuracy.
bobbybob
Messages
2
Reaction score
0
Hello. I've searched around a bit for a math forum where I could get help with this and this seems like the one I found where I could get some help with this. I was posed the following problem. Now I must admit it is over my head (as is most of the math on this forum) I was hoping that someone here could help give me an answer for this person. Or if not an answer, a reason why his probem makes no sense.

I want to predict the number of cups to be hit in beer pong each round, based upon shot percentage.

It's not just number of shots * percentage, because if you make 2 shots in a row, you get an extra turn. Even your extra turns can get extra turns..

Therefore, Number of cups per round is the recursive formula

C(t) = C(a^2 * t) + 2at where 0 < a < 1 for accuracy

So if you want to find the number of cups in 1 round, calculate c(1)
This can actually be reduced to the summation equation

for i = 0 to infinity -> 2a^(2i+1)

How do I solve this summation and get a formula?
I'd really appreciate it,

Thanks.
 
Mathematics news on Phys.org
You either miss your first shot, OR make your first and miss the next, OR make your first two and miss the next OR ... OR make the first n and miss the next OR ...

The probability that you make the first n and miss the next is an(1-a).

So what you want is the sum of (getting n cups) x (probability of getting n cups) for all n, i.e.:

\sum _{n=0}^{\infty}na^n(1-a) = (1-a)\sum _{n=0}^{\infty}na^n = (1-a)\sum _{n=1}^{\infty}na^n = a(1-a)\sum_{n=1}^{\infty}na^{n-1} = a(1-a)f&#039;(a)

where

f(x) = \sum_{n=1}^{\infty}x^n = \sum_{n=0}^{\infty}x^n - 1 = \frac{1}{1-x} - 1 = \frac{x}{1-x}

So

f&#039;(x) = \frac{(1-x) - x(-1)}{(1-x)^2} = \frac{1}{(1-x)^2}

So

f&#039;(a) = \frac{1}{(1-a)^2}

Finally, the desired number is:

a(1-a)\frac{1}{(1-a)^2} = \frac{a}{1-a}
 
thank you very much
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top