Using implicit differentiation to differentiate log_a (x)

endeavor
Messages
174
Reaction score
0
Could someone please make sure I'm doing this right.
I want to find the derivative of the logarithm to the base a of x, using implicit differentiation.

Let y = \log_{a} x

a^y = x

\frac{d}{dx} (a^y) = 1 (implicit differentiation)

\frac{d}{dx} (e^{\ln a})^y = 1

\frac{d}{dx} (e^{(\ln a)y}) = 1

e^{(\ln a)y} \frac{d}{dx} ((\ln a)(y)) = 1

(e^{\ln a})^y \frac{d}{dy} ((\ln a)(y)) \frac{dy}{dx} = 1 (did I use the chain rule correctly here?)

(a^y)(\ln a) \frac{dy}{dx} = 1

x \ln a \frac{dy}{dx} = 1

\frac{dy}{dx} = \frac{1}{x \ln a}
 
Last edited:
Physics news on Phys.org
Yep, very nicely done!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top