Can the PDE u_{xx}-3u_{xt}-4u_{tt}=0 be solved with given initial conditions?

  • Thread starter Thread starter Dragonfall
  • Start date Start date
  • Tags Tags
    Function Pde
Dragonfall
Messages
1,023
Reaction score
5
Solve u_{xx}-3u_{xt}-4u_{tt}=0 with initial conditions u(x,0)=x^2, u_t(x,0)=e^x.

I got that u is an arbitrary function F(x+t), which makes no sense. I factored the operator into (\partial/\partial x+\partial/\partial t)(\partial/\partial x-4\partial/\partial t)u=0, but I can't get anywhere.
 
Physics news on Phys.org
Say that

<br /> (\partial/\partial x-4\partial/\partial t)u=g<br />

Then your equation becomes,

<br /> (\partial/\partial x+\partial/\partial t)g=0<br />

Solve for g, then solve your first equation.
 
Let x&#039;=x-4t, t&#039;=-4x-t. At some point I have u_{x&#039;}=f(\frac{3x&#039;+5t&#039;}{-17})/17. Am I on the right track?
 
Dragonfall said:
Solve u_{xx}-3u_{xt}-4u_{tt}=0 with initial conditions u(x,0)=x^2, u_t(x,0)=e^x.

I got that u is an arbitrary function F(x+t), which makes no sense. I factored the operator into (\partial/\partial x+\partial/\partial t)(\partial/\partial x-4\partial/\partial t)u=0, but I can't get anywhere.
Why does that make no sense? You have a pde that is of second order in both x and t but you give only initial conditions when t= 0. Without boundary conditions on x, you will not have a specific solution.
 
Well I'm copying down exactly what's written in the textbook, Partial Differential Equations: An Introduction by W. A. Strauss, S2.2 Problem 9.
 
And why should your textbook make no sense?
 
Ok this second level questioning confuses me.
 
Because there exists a unique solution at the back of the book:

\frac{4}{5}(e^{x+t/4}-e^{x-t})+x^2+\frac{t^2}{4}.
 
Last edited:
<br /> \left(\partial_{x}-a^{-1}\partial_{t}\right)\left(\partial_{x}+\partial_{t}\right)u\left(x,t\right)=0<br />

Hence the solution is the sum of two arbitrary functions with arguments x-t and x+at,

<br /> u\left(x,t\right)=F\left(x-t\right)+G\left(x+at\right)<br />

We have the conditions

<br /> \begin{align*}<br /> u\left(x,0\right)&amp; =x^{2}\\<br /> u_{t}\left(x,0\right)&amp; =e^{x}<br /> \end{align*}<br />

Using u\left(x,0\right)

<br /> \begin{align*}<br /> x^{2}&amp;=F\left(x\right)+G\left(x\right) \\<br /> G\left(x\right)&amp;=x^{2}-F\left(x\right)<br /> \end{align*}<br />

Therefore,

<br /> u\left(x,t\right)=F\left(x-t\right)+\left(x+at\right)^{2}-F\left(x+at\right)<br />

Next, using u_{t}\left(x,0\right)

<br /> \begin{align*}<br /> e^{x}&amp; =-F^{\prime}\left(x\right)+2ax-aF^{\prime}\left(x\right) \\<br /> F^{\prime}\left(x\right)&amp; =\frac{2ax-e^{x}}{\left(1+a\right) }\\<br /> F\left(x\right)&amp; =\frac{ax^{2}-e^{x}}{\left(1+a\right)} + c<br /> \end{align*}<br />

So

<br /> \begin{align*}<br /> u\left(x,t\right)&amp; =\frac{a\left(x-t\right)^{2}-e^{\left(x-t\right)}}{\left(1+a\right)}+c+\left(x+at\right)^{2} -\frac{a\left(x+at\right)^{2}-e^{\left(x+at\right)}}{\left(1+a\right)} - c\\<br /> &amp;=\frac{e^{\left(x+at\right)}-e^{\left(x-t\right)}}{\left(1+a\right)}+\frac{\left(x+at\right)^{2}\left(1+a\right)+a\left(x-t\right)^{2}-a\left(x+at\right)^{2}}{\left(1+a\right)}\\<br /> &amp;=\frac{e^{\left(x+at\right)}-e^{\left(x-t\right)}}{\left(1+a\right)}+\frac{x^{2}\left(1+a\right)+\left(1+a\right)at^{2}}{\left(1+a\right)}\\<br /> &amp;=\frac{e^{\left(x+at\right)}-e^{\left(x-t\right)}}{\left(1+a\right)}+x^{2}+at^{2}<br /> \end{align*}<br />
 

Similar threads

Back
Top