theCandyman said:
I am glad this came up. I was bored while preparing for my radiation physics final and I decided to find out how many kilograms of U-238 are needed to have the same activity as one kilogram of Ra-226. The answer I got was around 3 BILLION kilograms of U-238. I may have made a mistake, and even though it was just for fun (Fun? What has school done to me?), I wouldn't mind someone double checking. See what you come up with, terfrr.
Candyman,
I think you slipped a few decimal points; it's about 3 MILLION.
The calculation as I outlined above; if you take the mass out, so that you are calculating
specific activity; depends on the half-lifes and atomic weights. Thereforre, the ratio
of the specific activity will be given by the product of the proper ratios of the half-lifes
and atomic weights.
The half-life of U-238 is 4.468 Billion years; the half-life of Ra-226 is 1600 years.
The atomic weights are approximately 238 and 226, of course.
If the half-life is longer; then you need more of the substance for a given activity.
Likewise, if the atomic weight is larger, you have fewer nuclei per unit mass.
Therefore the ratio of the specific activities of U-238 to Ra-226 should be given by:
Ratio = ( U-238 half-life )/( Ra-226 half-life ) * ( U-238 atomic wt ) / ( Ra-226 atomic wt )
= ( 4.468e9 / 1600 ) * ( 238 / 226 ) = 2.94e+06
[This is essentially what tehfrr got with his software.]
So it takes 3 Million kilograms of U-238 to have the same activity as 1 kilogram of Ra-226
Dr. Gregory Greenman
Physicist