Implicit function on functions composed of itself

chy1013m1
Messages
14
Reaction score
0
Suppose F(x, y) is C1. F(0, 0) = 0. What conditions on F will guarantee that the equation F(F(x, y), y) = 0 can be solved for y as a C1 function of x near (0, 0) ?

would it simply be dF/dy not equal 0 ?
 
Physics news on Phys.org
Use the implicit function theorem. Seems you are on the right track, but F is a composition of F and y, so you would have to use the chain rule to right out dF/dy properly.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top