Invariant quantities in the EM field

AI Thread Summary
The discussion centers on the invariance of the quantities E^2 - B^2 and E · B under Lorentz/Poincare transformations, which are fundamental in understanding electromagnetic (EM) fields. It is clarified that while E and B are components of EM waves, they can also represent more general radiated EM fields, leading to the scalar product E · B not always being zero. The invariance of these quantities is noted to have limited physical significance, primarily aiding in the formulation of Lagrangian density for deriving field equations. The conversation highlights the complexity of the relationship between electric and magnetic fields, especially under transformations that mix space and time. Understanding these concepts is crucial for grasping the nature of light and electromagnetic radiation.
Mentz114
Messages
5,429
Reaction score
292
I understand that the quantities

E^2 - B^2

\vec{E} \cdot \vec{B}

(the dot is vector inner product).
where E and B are the electric and magnetic components of an EM wave,
are invariant under Lorentz/Poincare transformations.
Can someone explain the physical significance of this ? Is either quantity related to the velocity of light ( or the invariance of the velocity of light ) ?

The second expression must be zero at all times surely ?
 
Last edited:
Physics news on Phys.org
Mentz114 said:
I understand that the quantities

E^2 - B^2

\vec{E} \cdot \vec{B}

(the dot is vector inner product).
where E and B are the electric and magnetic components of an EM wave,
are invariant under Lorentz/Poincare transformations.
Can someone explain the physical significance of this ? Is either quantity related to the velocity of light ( or the invariance of the velocity of light ) ?

The second expression must be zero at all times surely ?

Not necessarily wave. An EM wave is just a particular case of a radiated EM field. That's why the scalar product is not always 0, because the radiated EM field is not always a wave.

There's not too much physical significance of the invariants, just that the first one is good for a lagrangian density since it leads to field equations second order in time.

Daniel.
 
Thanks, Daniel.

I didn't know there are solutions to Maxwells equations other than the EM wave.

It's hard getting my head around the idea that the E and B fields 'mix' like space and time, when boosted.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top