Analytical Mechanics- constraints/lagrange

Elvex
Messages
11
Reaction score
0

Homework Statement


Consider a point mass m moving under the influence of the gravitational force F= -mg e_y . The mass is constrained to slide along a given curve y= f(x) in the x-y plane. You may set z=0 from the start and consider two dimensional motion.

c) A Skier descends a slope with profile y= -ax^n with a>0 and n>0. She starts at the top at (x,y) = (0,0) with zero velocity, and slides straight down without friction under the influence of gravity. If the slope steepens sufficiently, the skis will leave the ground at some point. Formulate a condition for when this happens. For what values of the parameter n, and at which point, do the skis leave the ground?


OK, so I already formulated the constraint and solved for the constraint force as a function of x. It's pretty messy.

My question is more a conceptual one. How do I define a condition for when the skier falls off the curve?

Does this have to do with relating the constraint force to the gravitational force? The tangent line of the constraint force? I'm not really sure how to start this.
 
Physics news on Phys.org
You can look at it two ways:

When the normal force from the hill is greater than the gravitational force perpendicular to it

or,

When the hill is dropping faster than the skier.

Hope that helps
 
I got it, I had to set the constraint force to zero, or my lagrange multiplier really cause the gradient of my constraint is trivial in setting F = 0.

I then dropped the E term cause E = 0 in this case, U defined as being negative... and then got a term with a's and n's = 1, which can only be satisfied for n > 2. Good problem.
 
Elvex said:
... and then got a term with a's and n's = 1, which can only be satisfied for n > 2. Good problem.

And that answer is obviously correct, because if the ground was not there the skier would be falling in a parabola. i .e. with n = 2. :wink:
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top