Lorentz Transformations in xy & xyz Directions | Pat

patapat
Messages
20
Reaction score
0
So I'm looking at some Lorentz transformation equations and it says
x'=\gamma(x-vt)
t'=\gamma(t-vx/c^{2})
y'=y
z'=z

I'm assuming the values for y', y, z' and z only hold true when the inertial frames of S and S' are moving at a relative velocity in the x-direction. With this being said, what would the transformations be if the inertial frames were in an xy or xyz direction? Thanks in advance.

-Pat
 
Physics news on Phys.org
lorentz transformation plane motion

patapat said:
So I'm looking at some Lorentz transformation equations and it says
x'=\gamma(x-vt)
t'=\gamma(t-vx/c^{2})
y'=y
z'=z

I'm assuming the values for y', y, z' and z only hold true when the inertial frames of S and S' are moving at a relative velocity in the x-direction. With this being said, what would the transformations be if the inertial frames were in an xy or xyz direction? Thanks in advance.

-Pat
As far as I know the situation is known as plane motion. Your question is answered in

Relativistic motion in a plane
Byron L. Coulter
Am. J. Phys. 48, 633 (1980) Full Text: [ PDF (486 kB) GZipped PS Order ]
I think it can be simplified.
 
patapat said:
So I'm looking at some Lorentz transformation equations and it says
x'=\gamma(x-vt)
t'=\gamma(t-vx/c^{2})
y'=y
z'=z

I'm assuming the values for y', y, z' and z only hold true when the inertial frames of S and S' are moving at a relative velocity in the x-direction. With this being said, what would the transformations be if the inertial frames were in an xy or xyz direction? Thanks in advance.

-Pat

If (\mathbf{r},t) are space-time coordinates of an event in the reference frame O, and the reference frame O' moves with velocity \mathbf{v} = c \vec{\theta} \theta^{-1} \tanh \theta with respect to O, then space-time coordinates (\mathbf{r}',t') of the same event in O' can be obtained by formulas

\mathbf{r}' = \mathbf{r} + \frac{\vec{\theta}}{\theta}(\mathbf{r} \cdot \frac{\vec{\theta}}{\theta}) (\cosh \theta - 1) - \frac{\vec{\theta}}{\theta} ct \sinh \theta

t' = t \cosh \theta - (\mathbf{r} \cdot \frac{\vec{\theta}}{\theta}) \frac{\sinh \theta}{c}

These formulas are derived by the same procedure as momentum-energy Lorentz transformations (see eq. (4.2) - (4.3) in http://www.arxiv.org/physics/0504062 )

Eugene.
 
Last edited by a moderator:
t'=\gamma(t-{\vec r}\cdot{\vec v}/c^2)
 
Last edited:
The previous reply is three equations, I couldn't get Latex to do line by line.
r_\parallel and r_\perp are parallel and perp to v.
 
And if you know matrix multiplication,
B = \begin{pmatrix} \gamma &amp; -\gamma \beta_1 &amp; -\gamma \beta_2 &amp; -\gamma \beta_3 \\<br /> -\gamma \beta_1 &amp; 1 + \frac{(\gamma - 1)\beta_1^2}{\beta^2} &amp; \frac{(\gamma - 1)\beta_1\beta_2}{\beta^2} &amp; \frac{(\gamma - 1)\beta_1\beta_3}{\beta^2} \\<br /> -\gamma \beta_2 &amp; \frac{(\gamma - 1)\beta_1\beta_2}{\beta^2} &amp; 1+\frac{(\gamma - 1)\beta_2^2}{\beta^2} &amp; \frac{(\gamma - 1)\beta_2\beta_3}{\beta^2} \\<br /> -\gamma \beta_3 &amp; \frac{(\gamma - 1)\beta_1\beta_3}{\beta^2} &amp; \frac{(\gamma - 1)\beta_2\beta_3}{\beta^2} &amp; 1 + \frac{(\gamma - 1)\beta_3^2}{\beta^2}<br /> \end{pmatrix}
where \beta = (\beta_1, \beta_2, \beta_3) is a unit vector in the direction of the relative velocity, and
x&#039; = B x for x = (c t, x, y, z) and similar for the transformed system x&#039;.

Source: Jackson, Classical Electrodynamics, chapter 11.7[/size]
 
I had a feeling there was no simple answer, thanks guys.
 
Back
Top