How to Derive Lagrange's Equations for a Double Pendulum?

yukawa
Messages
10
Reaction score
0
Lagrange equation of motion



(from Marion 7-7)

A double pendulum consists of two simpe pendula, with one pendulum suspended from the bob of the other. If the two pendula have equal lenghts and have bobs of equal mass and if both pendula are confirned to move in the same plane, find Lagrange's equation of motion for the system. Do not assume small angles.

Which generalized coordinates should it choose? And how to made use of the constrains?
 
Physics news on Phys.org
Make a picture. You can see that the 2 angles formed with the vertical are the 2 needed generalized coordinates.
 
but are these two angles independent of each other? (in fact, i don't know how to determine whether two coordinates are independent of each other or not)
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top