Another sequence convergence proof

antiemptyv
Messages
31
Reaction score
0

Homework Statement



Let y_n := \sqrt{n+1} - \sqrt{n} for n \in \mathbb{N}. Show that (y_n) converges.

Homework Equations



The Attempt at a Solution



I see that it converges to 0. I just need a nudge in the right direction at getting into | \sqrt{n+1} - \sqrt{n} - 0 | = | \sqrt{n+1} - \sqrt{n} | to show it's less than any \epsilon > 0. Any manipulating I've tried so far makes the terms way too big to work with.
 
Last edited:
Physics news on Phys.org
How about

\left(\sqrt{n+1} - \sqrt{n}\right) \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}
 
ohhhh, i see it now.
 
What do you do after
1/(sqrt{n+1)+sqrt{n}) ??
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top