Complex Analysis-Path Integral

  • Thread starter Thread starter notmuch
  • Start date Start date
  • Tags Tags
    Complex Integral
notmuch
Messages
16
Reaction score
0
Complex Analysis--Path Integral

Homework Statement


Let I(r) = Int(e^(iz)/z) over the "top half" of the circle of radius r, centered at the origin. Show that lim {r -> infty} I(r) = 0.


Homework Equations


All given.


The Attempt at a Solution


I was thinking of using the inequality |Int(e^(iz)/z)| <= Int(e^(-r*sin t)) from 0 to pi. I want to show that the right hand side of the inequality goes to zero as r -> infty. If so, then the problem should be solved. Thanks.
 
Physics news on Phys.org
A re-statement of the problem and my work (so it's easier to read):

Let \gamma(t) = re^{it} for t \in [0, \pi].
Evaluate:

\lim_{r \to \infty}\int_{\gamma}{\frac{e^{iz}}{z}}

So far I have:

\int_{\gamma}{\frac{e^{iz}}{z}} = \int_{0}^{\pi}{e^{-r \sin t}(\cos(r\cos t) + i\sin(r\cos t)}dt

So,
|\int_{\gamma}{\frac{e^{iz}}{z}}| \leq \int_{\gamma}{|\frac{e^{iz}}{z}|} = \int_{0}^{\pi}{e^{-r\sin t}

Am I on the right track? Anyone have a suggestion for showing that \lim_{r \to \infty} \int_{0}^{\pi}{e^{-r\sin t} = 0?

Thanks!
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top